

HARDWARE & INSTALLATION GUIDE

ACS – Actuator Control Solutions Stepper Drive/Controller and Motors

LINEAR SOLUTIONS MADE EASY

Air-oil systems, Inc. www.airoil.com

Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

201102031042

Contents

	Lis	st of Figures
	Lis	iv iv
	He	alth and Safety Regulationsvi
		Safety Symbolsv
		EMC Wiring Guidelines vii
		Proper and Safe Use of Productvii
		Handling and Unpackingviii
		Product Warningsviiii
	1.	Product Overview
		1.1 The ACS Stepper Drive/Controller for Actual Control Solutions1-1
		1.1.1 The ACS Stepper Drive/Controller Basic Overview
	2.	1.1.2 Optional Accessories 1-1 <i>Environment, Dimensions & Mounting</i>
		2.1 Operating Environment
		2.2 Dimensions
		2.3 Mounting the ACS Drive/Controller
	3,	Starter Kit 3-1
	4.	ACS Drive/Controller Setup
		4.1 ACS Drive/Controller and Actuator Basic Setup
		4-2
	5.	
	$\langle S \rangle$	5.1 Connections & Cables Overview
Dir.O		5.2 Motor Power Connection and Cable
N'		5.3 Encoder Connection and Cable
Y-		5.4 I/O Connection and Cable5-3
		5.5 Input Power Connection
		5.7 RS-485 Connection
		5.8 Ethernet Connection
		5.9 Cable Routing
	6,	Specifications and Wiring
	0.	6.1 Digital Inputs
		6.1.1 Specifications
		6.1.2 Typical Wiring Diagrams
		6.2 Digital Outputs

	6.2.1 Specifications	6-2
	6.2.2 Typical Wiring Diagrams	6-3
	6.3 Input Power	6-3
	6.3.1 Drive Specifications	6-4
	6.3.2 Typical Input Power Wiring	6-4
	6.3.3 Power Supply Selection	6-5
	6.3.4 Suggested Power Supplies	6-5
7.	I/O Timing Diagrams	7-1
	 7.1 I/O Timing Diagrams	7-1 7-2
<i>8.</i>	Move Select Logic	8-1
	8.1 Move Select Logic Tables	8-1
<i>9.</i>	LED Codes and Faults	9-1
	9.1 LED Codes	9-1
	9.2 Fault Descriptions and Recovery	9-1
10.	Troubleshooting	10-1
	10.1.1 Troubleshooting the ACS Drive/Controller	10-1
Арр	endix 1	A1-1
	Motors	
Арр	endix 2.	A2-1
	Product Warranty	
C		
b_{ll}		

List of Figures

	Figure 2-1	Mounting the ACS Drive/Controller	. 2-1
	Figure 3-1	ACS Drive/Controller and ERD Actuator Basic Setup	. 3-1
	Figure 5-1	Motor Power Connection on ACS Drive/Controller	. 5-1
	Figure 5-2	Motor Power Cable 3604-1767/1766	. 5-2
	Figure 5-3	Encoder Connection on ACS Drive/Controller	. 5-2
	Figure 5-4	Encoder Cable 3604-1768	. 5-3
	Figure 5-5	I/O Connection on ACS Drive/Controller	. 5-3
	Figure 5-6	I/O Cable 3604-1770	. 5-4
	Figure 5-7	Input Power Connection	. 5-4
	Figure 5-8	RS-232 Connection	. 5-5
	Figure 5-9	RS-232 Connection	. 5-5
	Figure 5-10	RS-485 Connection for Future ACS prive/Controller Programmability	. 5-6
	Figure 5-11	Ethernet Connection for Future ACS Drive/Controller Programmability	. 5-6
	Figure 5-12	Cable Routing for Top and Side Mounted Connectors	. 5-7
	Figure 6-1	Digital Input Circuit.	. 6-1
	Figure 6-2	Input Source (switched) Connection	. 6-1
	Figure 6-3	Input Source (PNP) Connection	. 6-2
	Figure 6-4	Input Sinc (switched) Connection	. 6-2
	Figure 6-5	Input Sink (NPN) Connection	. 6-2
	Figure 6-6	Output Circuit	. 6-3
	Figure 6-7	Digital Output Sinking Connection	. 6-3
	Figure 6-8	Digital Output Sourcing Connection	. 6-3
	Figure 6-9	ACS Drive/Controller Logic and Main Power Supplies	. 6-4
•	Figure 6-10	ACS Drive/Controller Single Supply – Main Power	. 6-4
\circ	Figure 6-11	ACS Drive/Controller External Cutoff Switch for Emergency Stop	. 6-5
	Figure 7-1	Input Requirement	.7-1
<i>bi</i> .	Figure 7-2	System Startup Timing	.7-1
*	Figure 7-3	Jog Move Timing	.7-1
	Figure 7-4	Absolute & Incremental Move Timing	. 7-2

Table 3-1	ACS Starter Kit Contents
Table 3-2	D-sub to RJ12 Converter Wiring
Table 5-1	Motor Power Connection PIN Outs
Table 5-2	Motor Power Cable and Connector Parts 5-2
Table 5-3	Encoder Connection PIN Outs
Table 5-4	Encoder Cable and Connector Parts 5-3
Table 5-5	I/O Connection PIN Outs
Table 5-6	I/O Cable and Connector Parts5-4
Table 5-7	Input Power PIN Outs
Table 5-8	Input Power Cable Parts
Table 5-9	RS-232 PIN Outs and Connection
Table 5-10	RS-232 Cable Parts 5-5
Table 6-1	Input Power Cable Parts
Table 6-2	Digital Output Specifications
Table 6-3	Drive Specifications
Table 6-4	Maximum Power Supply Current for Tolomatic Motors
Table 6-5	Recommended Switching Power Supplies
Table 6-6	Recommended Linear-Regulated Power Supplies
Table 6-7	Recommended Linear Unregulated Power Supplies
Table 6-8	Fuses
Table 8-1	4 Move Commands Mode Logic
Table 8-2	8 Move Commands Mode Logic
Table 8-3	16 Move Commands Mode Logic
Table 9-1	LED Indicators
Table 9-2	Safety Faults
Table 9-3	Critical Faults
Table 10-1	Troubleshooting Descriptions 10-1
Table A-1	Tolomatic Motor Specifications
Table A-2	Tolomatic Motor Part Numbers
Table A-3	Encoder Specifications
Table A-4	NEMA 11 Motor Connection PIN OutsA1-2
Table A-5	NEMA 17 Motor Connection PIN OutsA1-2
Table A-6	NEMA 23 Motor Connection PIN Outs A1-2
Table A-7	Encoder Connections and Connector PIN Outs

Health and Safety Regulations

Read completely through the applicable sections of the manual before the equipment is unpacked, installed or operated. Pay careful attention to all of the dangers, warnings, cautions and notes stated in the manual.

Serious injury to persons or damage to the equipment may result if the information in the manual is not followed.

Safety Symbols

Items that are specifically marked DANGER!, WARNING!, CAUTION! or NOTE! are arranged in a hierarchical system and have the following meaning:

DANGER!

Indicates a very hazardous situation which if not avoided, could result in *death or* serious injury. This signal word is limited to the most extreme situations.

WARNING!

Indicates a potentially bazardous situation which, if not avoided, could result in death or serious injury.

AOTION!

Indicates a potentially hazardous situation which, if not avoided, may result in property damage, minor or moderate injury.

CAUTION!

Indicates hot surfaces. Avoid contact.

NOTE!

Information that requires special attention is stated here.

EMC Wiring Guidelines

Cable routing

It is recommended that the power and signal cables for the ACS drive/controller be routed as far apart as possible to minimize system noise.

NOTE! The standard cables from Tolomatic are not flex rated and have a minimum bend radius of 3.75 inches. Any repeated flexing or excessive bending can result in broken conductors and intermittent faults.

Shielding and grounding

When cabling the system, shielded cables are recommended. The standard cables provided by Tolomatic have an overall shield with drain wice. The metal angle bracket on the drive/controller is also a case ground and should be tied to earth ground. To minimize EMI and ensure system reliability, all shield drain wires from all cables should be tied to a common earth ground.

Proper and Safe Use of Product

Protection circuits and external fuses

A fuse should be added to the input power line to protect the drive/controller and power supply from any potential over current conditions that may occur. (See Section 6: Specifications & Wiring, page 6-6)

Fail Safe Emergency Stop Recommendations

A means for a fail safe e-stop is highly recommended to ensure equipment and personal safety. The e-stop should provide a means to remove main power from the actuator to cease and prevent any unwanted motion.

Device Damage Prevention

To prevent permanent damage to the device, proper care should be taken not to exceed published voltage, current, temperature, and load ratings. In addition, proper wiring should be verified and safety measures checked before applying power.

Personal Safety

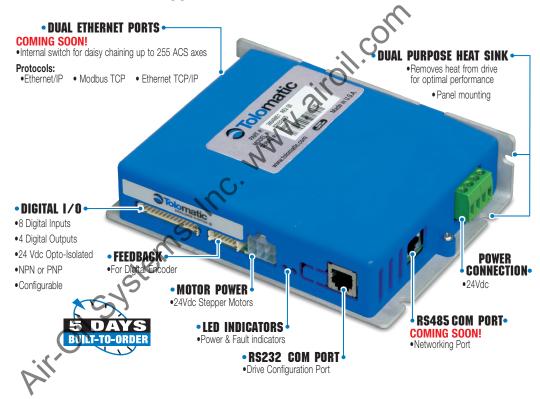
During normal operation the motor can become hot. It is highly recommended to display proper safety notices and implement proper safety measures to prevent contact with hot surfaces.

The manufacturer takes no responsibility whatsoever if the equipment is modified or if the equipment is used in any way beyond performance specifications. Unauthorized modifications or changes to the equipment are stricly forbidden and void all warranties.

Proper ESD measures should be taken to avoid static electricity from contacting the signal and power lines of the drive, motor and encoder.

Handling and Unpacking

When unpacking and handling, care should be taken not to drop the drive/controller as this can damage the connectors and internal electronics.


Product Warnings

The following precautions should be observed to prevent erratic behavior or damage:

- Do not short circuit the motor power at the power connector. Doing so may damage the drive power electronics. The motor/cable is part of the current regulation circuitry. For a short occurring in a motor, the motor leads should provide enough resistance and inductance to prevent dangerous peak currents from occurring.
- Do not reverse bias the power unit.
- Do not apply voltages above the maximum rated voltage.
- Do not expose drive to conductive contaminants, moisture, or excessive temperature.
- Do not dissassemble or modify the drive/controller.

1.1 The ACS Stepper Drive/Controller for Actuator Control Solutions

Tolomatic's ACS drive/controller is a stepper drive and controller intended for use with electric actuators. Tolomatic's Motion Interface software allows the user to select the compatible Tolomatic electric linear actuator of choice. The software automatically sets most of the necessary parameters to create the desired motion of the selected actuator reducing setup and programming time. (See Tolomatic Motion Interface Software Manual 3600-4167 for more information).

1.1.1 ACS Stepper Drive/Controller— Basic Overview

ACS Basic Drive/Controller (3604-9651) Capabilities

- 4, 8, or 16 move command modes (absolute, incremental or jog) for infinite position capability
- Adjustable motion profile parameters (velocity, accel/decel, force). Parameters are independently configurable for each move
- Ability to reduce holding current for energy savings

- End point correction
- Zone output based on position
- Force limiting capacity
- Configurable digital I/O (24 Vdc Opto-Isolated)(NPN or PNP)
- Compatible with most 24 Vdc stepper motors

Future Capabilities Currently in Development

OPERATING MODES:

- Stepper mode (pulse/direction)
- Analog position mode (0-10Vdc or 4-20mA)
- Pneumatic modes

NETWORKING CAPABILITIES

- Ethernet protocols:
 - Ethernet I/P for integration with Allen Bradley PLCs
 - Modbus TCP/RTU for integration with most other PLCs & HMIs
 - Fthernet TCP/IP
- Dual ethernet ports with internal switch for daisy chaining
- Modbus RTU over RS-485

Tolomatic offers a motor power cable with drive and motor mating connectors, an encoder cable with drive and encoder connectors, and an I/O cable with drive mating connector to flying leads. Cables are available in either 3-meter or 5-meter lengths.

Tolomatic offers a Starter Kit (Part No. 3604-9044) for use with optional USB computer connections. The kit includes:

USB to RS-232 converter Adapter cable for RJ12 to D-sub Tolomatic Motion Interface Software CD

2.1 Operating Environment

WARNING!

Do not expose the drive to conductive contaminants, moisture, or exceed temperature settings.

The ACS drive/controller is designed to be operated in ambient conditions from $0^{\circ} - 40^{\circ}$ C ($32^{\circ} - 104^{\circ}$ F), and humidity from 0 - 90% non-condensing. There is no ingress protection (IP) for the drive, so it is important to protect the drive from coming in contact with water or other conductive contamination. In addition, proper ESD procedures should be observed to prevent static discharge and damage to electronic components.

ACS Stepper Drive/Controller Operating Conditions			
Ambient Temperature 77° F, 25° C Nominal			
Operating Temperature	32°-104° F, 0°-40° C Non Freezing		
Storage Temperature	32°-158° F, 0°-70° C		
Humidity	0-90% non-condensing		

Table 2-1: ACS Operating Conditions

2.2 ACS Drive/Controller Dimensions

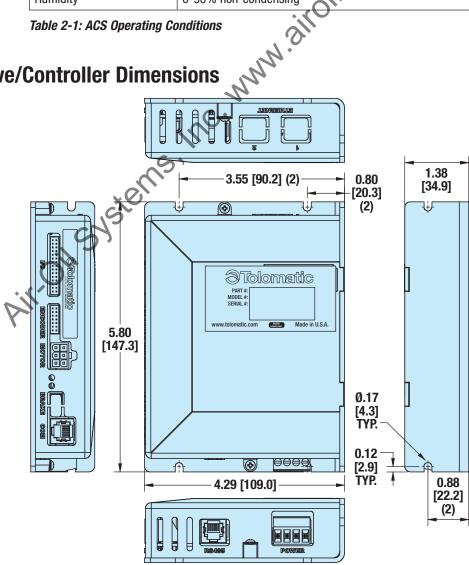


Figure 2-1: ACS Drive/Controller Dimensions

2.3 Mounting the ACS Drive/Controller

The drive/controller is intended to be mounted vertically to provide the vents with enough clearance on the top and bottom of the drive to allow for air flow. The metal bracket should also be mounted to a metal surface for best thermal dissipation. A 2-inch head space is recommended from the drive vents to another surface to ensure the proper Ambient temperature ratings are maintained.

It is recommended to have a minimum of 1-inch spacing between drives. This spacing may be relaxed providing the ambient temperature is kept within limits and the drive is mounted to a metal surface suitable enough to heat sink the drives.

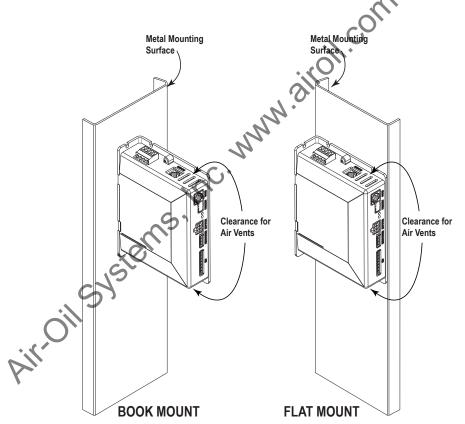


Figure 2-1 Mounting the ACS Drive/Controller

3.1 Starter Kit

Tolomatic offers a basic Starter Kit for the ACS stepper drive/controller that can be used to convert a USB connection to a serial port.

The kit includes an RJ12 cable, a D-sub to RJ converter, a USB to RS232 converter and a CD with the Tolomatic Motion Interface software.

	ACS Drive/Controller Starter kit: PN 3604-9044						
	ITEN	TOLOMATIC PART NUMBER	MFR PART NUMBER				
	RJ12 Cable	3604-1783	Assmann PN:				
	,S,		AT-S-26-6/6/B-7/R-R				
	D-sub to RJ Converter	3604-1782	Assmann PN:				
			AT-23065-R				
0	USB to RS232 Converter	3604-1795	Keyspan PN:				
X			USA19-HS				
	Tolomatic Motion Interface	3604-9526	-				
	Software CD						

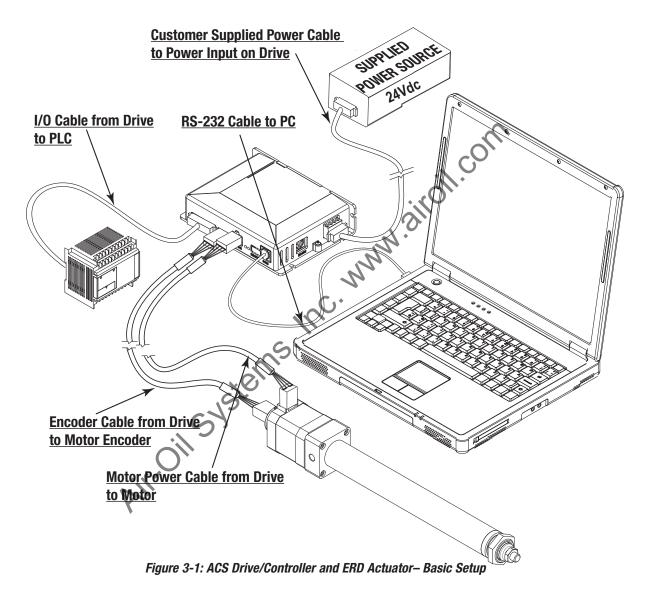
Table 3-1: ACS Starter Kit Contents

Tolomatic also offers a Programming Cable Kit (3604-9043) which includes the RJ12 cable and D-sub to RJ12 Converter.

WIRE COLOR	D-SUB
Yellow	2
Green	3
Red	4
Black	5
White	7

The D-sub to RJ12 converter should to be wired as follows:

 is reput


 internet

 is reput

 is reput

4.1 ACS Drive/Controller and Actuator Basic Setup

Figure 3-1 shows the simple setup of the ACS Drive/Controller, the Tolomatic ERD actuator and the necessary cables and power source.

Please refer to the following sections and page numbers for cable part numbers and wiring specifications:

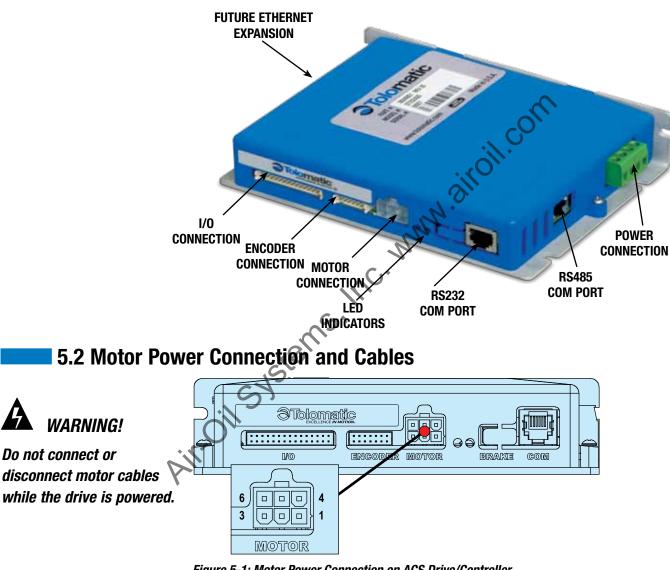
Motor Power Cable: Section 5- pages 5-1 to 5-2

Encoder Cable: Section 5- pages 5-2 to 5-3

I/O Cable: Section 5- pages 5-3 to 5-4

RS-232 Cable: Section 5- page 5-5

For recommended power supplies: Section 6- pages 6-5 to 6-6


4.1.1 Setup Procedures

- 1. Install drive/controller and actuator into appropriate fixtures.
- 2. Wire the 24Vdc power supply to the drive. See Section 6: Power Supply Selection.
- 3. Wire input and output signals to the desired logic device. See Section 5: Connections and Cables.
- 4. Attach motor and encoder cables.
- 5. Attach serial programming cable and install the Tolomatic Motion Interface

eta

5.1 Connections and Cables Overview

All cables for the ACS Drive/Controller can be ordered through Tolomatic with the exception of the power supply. When using cables other than those provided by Tolomatic, reference the cable mating connector style to ensure the proper cabling is supplied.

PIN NUMBERS	SIGNAL	CABLE WIRE COLOR	
1	Motor A+	Red	
2	Shield	Shield	
3	Motor B+	Green	
4	Motor A-	White	
6	Motor B-	Black	

 Table 5-1: Motor Power Connection PIN Outs

The ACS Drive/Controller has a maximum output of 2.5A peak.

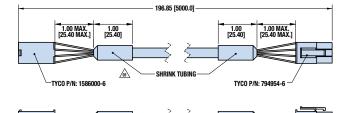


Figure 5-2: Motor Power Cable 3604-1767/1766

CABLE	TOLOMATIC PART NO.	DRIVE MATING Connector	DRIVE Contacts	MOTOR Mating Connector	MOTOR Contacts
Motor Power: 3-meter	3604-1766	Tyco PN: 794954-6	Tyco PN: 1586315-3	Tyco PN: 1586000-6	Tyco PN: 1586314-3
Motor Power: 5-meter	3604-1767	Tyco PN: 794954-6	Tyco PN: 1586315-3	Tyco PN: 1586000-6	Tyco PN: 1586314-3

Table 5-2: Motor Power Cable and Connector Parts

5.3 Encoder Connection and Cable

The ACS Drive/Controller has an encoder port that supports differential quadrature encoders. Single encoders may be used with additional external circuitry. It is highly recommended to use differential encoders as they are more resistant to noise issues. The drive can supply +5Vdc power to the feedback device up to 100mA.

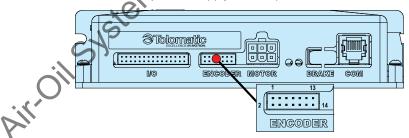


Figure 5-3: Encoder Connection on ACS Drive/Controller

PIN NUMBERS	SIGNAL	CABLE WIRE COLOR
1	ENC A+	Blue
2	ENC A-	Orange
3	ENC B+	Yellow
4	ENC B-	Gray
5	NA	NA
6	NA	NA
9	Signal Ground	Black
12	+5Vdc	Red
13	Case Ground	NA

Table 5-3: Encoder Connection PIN Outs

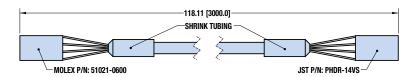


Figure 5-4: Encoder Cable 3604-1768

CABLE	TOLOMATIC Part no.	DRIVE MATING CONNECTOR	DRIVE MATING CONTACTS	ENCODER Mating Connector	ENCODER Mating Contacts
Encoder: 3-meter	3604-1768	JST PN:	JST PN:	Molex PN:	Molex PN:
		PHDR-14VS	SPHD-001T-P0.5	51021-0600	50079-8100
Encoder: 5-meter	3604-1769	JST PN:	JST PN:	Molex PN:	Molex PN:
		PHDR-14VS	SPHD-001T-P0.5	51021-0600	50079-8100

Table 5-4: Encoder Cable and Connector Parts

5.4 I/O Connection and Cable

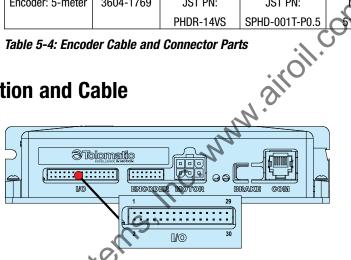
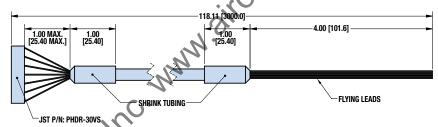



Figure 5-5: I/O Connection on ACS Drive/Controller

	PIN NUMBERS	SIGNAL	CABLE WIRE COLOR
		Input 1	Red/Black/White
	2	Input 2	Orange/Green
5	3	Input 3	Red/White
X	4	Input 4	Green/White
	5	Input 5	Blue/White
	6	Input 6	White/Black/Red
	7	Input 7	White/Red
	8	Input 8	Orange/Red
	9	Input COM	Green/Black
	10	Output 1 -	Red/Black
	11	Output 1 +	White
	12	Output 2 -	White/Black
	13	Output 2 +	Blue
	14	Output 3 -	Blue/Black
	15	Output 3 +	Orange

PIN NUMBERS	SIGNAL	CABLE WIRE COLOR
16	Output 4 -	Orange/Black
17	Output 4 +	Red
20	Case Ground	Shield
23	NA	Blue/Red
24	NA	Red/Green
25	NA	Green
26	NA	Black/Red
27	NA	Green/Black/White
28	NA	Black/White/Red
29	Signal Ground	Black
30	Analog Ground	Black/White

Table 5-5: I/O Connection PIN Outs

Figure 5-6: I/O Cable 3604-1770

CABLE	TOLOMATIC PART NO.	DRIVE MATING CONNECTOR	DRIVE MATING CONTACTS
I/O: 3-meter	3604-1770	JST PN: PHDR-30VS	JST PN: SPHD-001T-P0.5
1/0: 5-meter	3604-1771	JST PN: PHDR-30VS	JST PN: SPHD-001T-P0.5

Table 5-6: I/O Cable and Connector Parts

5.5 Input Power Connection

CAUTION!

Reversing polarity of the input power will damage the actuator drive electronics. The input power is connected via pins on the drive with customer supplied cabling. The input power mating connector is supplied by Tolomatic.

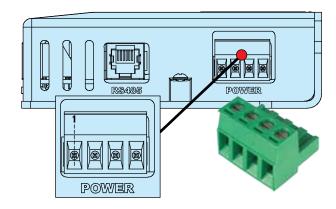
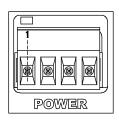
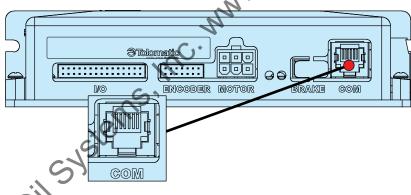
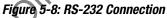


Figure 5-7: Input Power Connection

5: CONNECTIONS & CABLES

PIN NUMBERS	SIGNAL
1	Main Power +24Vdc
2	Keep Alive +24Vdc
3	NA
4	Ground – Power


Table 5-7: Input Power PIN Outs

CABLE	INPUT POWER MATING CONNECTOR
Customer Supplied	OnShore PN: ED950/4
Table 5-8: Input Po	wer Cable Parts
nection	

5.6 RS-232 Connection

The RS-232 port connector is a standard RJ12 type connector and will mate with standard RJ12 connectors and cables.

The ACS Stepper Drive/Controller uses five signals from the RS-232 port and will need to be properly wired to the PIN diagram shown below. RS-232 baud rate is set at 38400 bps, 1-stop bit, no parity and no flow control. The RS-232 cable itself is a straight through cable.

PIN 1 SHIELD	PIN NUMBERS	DESCRIPTION
	2	ТХ
	3	RX
	4	Programming
	5	Ground
	6	Reset

Table 5-9: RS-232 PIN Outs and Connection

CABLE	TOLOMATIC PART NO.	
RJ12	Customer Supplied or 3604-1787	
D-sub to RJ12	3604-1782	

Table 5-10: RS-232 Cable Parts

5.7 RS-485 Connection

At the time of publication of this User Guide, the RS-485 port is available for future networking capability with the ACS Drive/Controller.

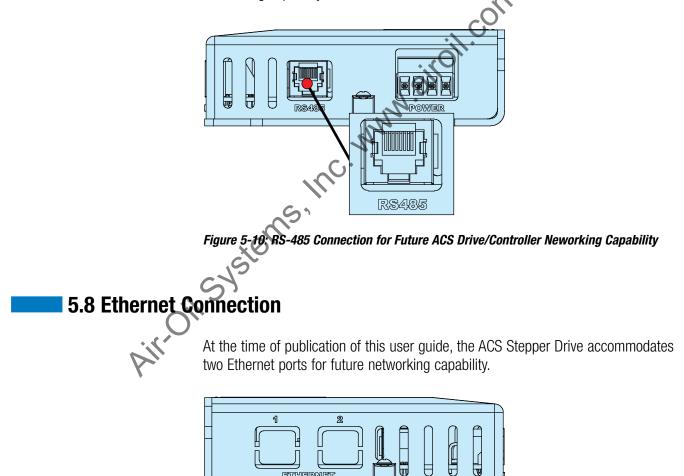
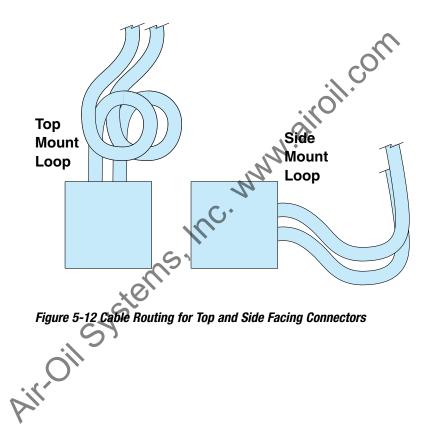


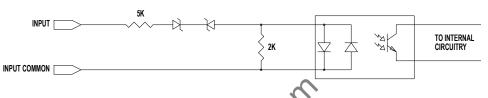
Figure 5-11: Ethernet Connection for Future ACS Drive/Controller Programmability


0 F

ETHERNET

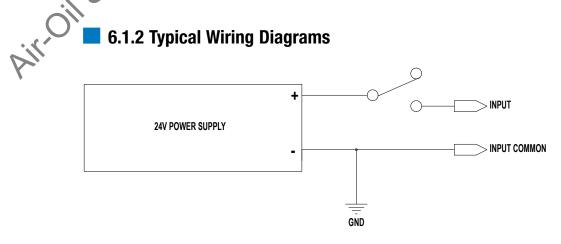
5.9 Cable Routing

Over time, liquid contaminants such as oil and cleaning solutions may accumulate on the cables and in the connectors if they are an exposed type. To minimize the introduction of contaminants into the connector, route the cables so that there is a loop in the cable just prior to its attachment to the connector.


Two examples are shown below depending on the orientation of the connectors. Units mounted in such a way that the connectors are on the bottom surface of the actuator require no looping.

6.1 Digital Inputs

6.1.1 Specifications


The ACS Drive/Controller has a total of 8 opto-isolated digital inputs. These digital inputs are optoisolated from the controller's drive circuitry and can be wired either as sinking or sourcing. All of the digital inputs have a common return.

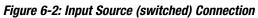


Figure 6-1: Digital Input Circuit

Opto-isolated Digital Input Specifications		
Input Voltage Range	0 to 28Vdc	
On State Voltage Range	16 to 28Vdc	
Off State Voltage Range	0 to 5Vdc	
On State Current:		
16Vdc (minimum)	1.9mA	
24Vdc (nominal)	3.4mA	
28Vdc (maximum)	4.2mA	
Nominal Input Impedance (24V)	7ΚΩ	
Off State Current (maximum)	0.4mA	
Update Rate (maximum)	2ms	

Table 6-1: Opto-Isolated Digital Input Specifications

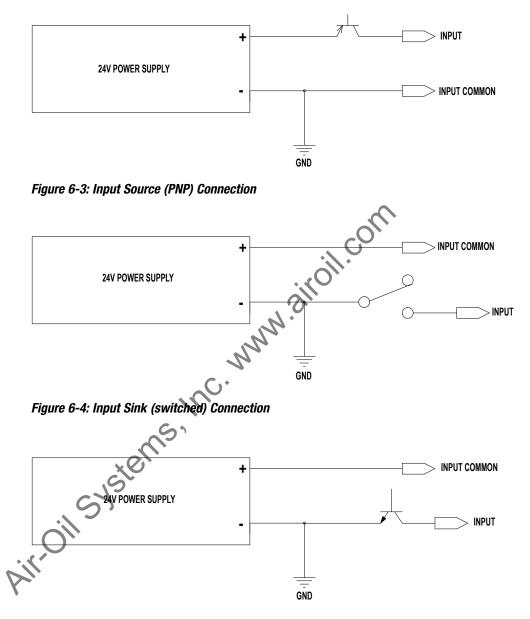
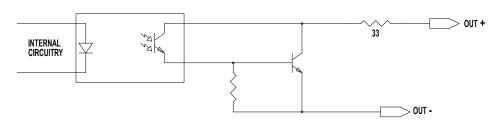



Figure 6-5: Input Sink (NPN) Connection

6.2 Digital Outputs

6.2.1 Specifications

The ACS Drive/Controller has four digital outputs. These digital outputs are optoisolated from the drive circuitry and can be configured for sinking or sourcing. The outputs are protected against over current and short circuit conditions. Once an over current condition is present, the output turns off until the load is removed.

Figure 6-6: Output Circuit

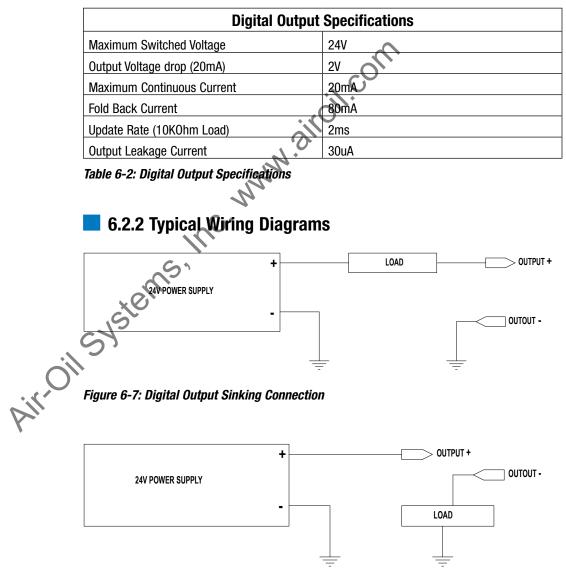


Figure 6-8: Digital Output Sourcing Connection

6.3 Input Power

Voltage above the absolute maximum can result in permanent damage to the ACS internal drive components.

WARNING!

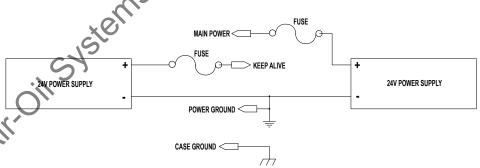
Do not reverse bias the power inputs. Doing so will result in permanent damage to the drive.

WARNING!

Do not short circuit the motor power at the power connector. Doing so may damage the drive power electronics. The motor/ cable is part of the current regulation circuitry. For a short occuring in a motor, the motor leads should provide enough resistance and inductance to prevent dangerous peak currents from occurring.

6.3.1 Drive Specifications

ACS Internal Drive Specifications		
Current - Maximum	4 A	
Voltage - Nominal	20-28 V	
Over Voltage ¹	30 V	
Under Voltage ²	18 V	
Absolute Maximum Voltage	35 V	
Logic Current Draw Maximum (24V)	100mA	


Table 6-3: ACS Internal Drive Specifications

¹ Drive will shut down at 30V; any voltage above the absolute max voltage can result in permanent damage.

² Drive will turn off below 18V.

The drive and logic (keep alive) power share the same ground. Drive logic circuitry can be powered from the keep alive input or the main drive power.

6.3.2 Typical Wiring Diagrams

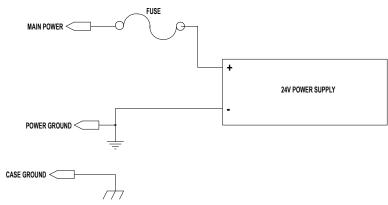
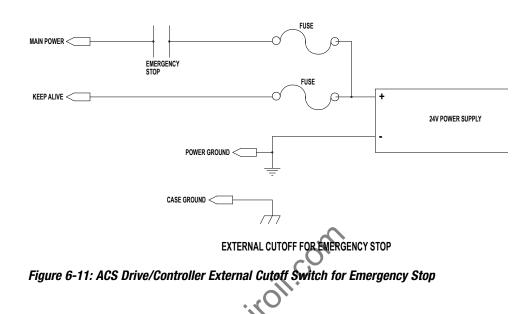



Figure 6-10: ACS Drive/Controller Single Supply – Main Power

All installations should provide a means for a hardware emergency stop that removes power from the drive in an emergency condition. The drive emergency stop function should not be relied on when safety is required. It is recommended to disconnect only the + bus power and keep the power ground line connected.

6.3.3 Power Supply Selection

Both unregulated and regulated power supplies can be used to power the ACS Drive/Controller. Unregulated supplies can be a better choice depending on the application as they have a larger output capacitance, which can make them better at supplying peak current without faulting out.

The ACS Drive/Controller is intended to run off of an isolated DC power source. The power supply current that will be required will depend on the motor power needed in the installation. If operating more than one drive on the same power supply, add the required power supply rating for each actuator. Maximum power supply current for Tolomatic motors are shown below.

Maximum Power Supply Requirements for Tolomatic Motors			
MOTOR	MAXIMUM AMPERAGE	MAXIMUM WATTS @ 24 VDC	
NEMA 11	2.3 A	55.2	
NEMA 17	3.4 A	81.6	
NEMA 23	4 A	96	

Table 6-4: Maximum Power Supply Current for Tolomatic Motors

To size the power supply, the following formula can also be used to estimate maximum current required:

Motor Current (amps rms) * 2.2 + 0.1

For example, if the motor is rated at 1 Arms, the calculation would look like:

1 Arms * 2.2 + 0.1 = 2.3A

The drive can supply a maximum of 2.5A peak (1.77 Arms), so the drive will not use more than 4 Amps.

Supply power = current x 24V

Example: If 2.3A is needed, $2.3A \times 24V = 55.2W$.

6.3.4 Suggested Power Supplies

Switching Power Supplies	Power Output
CUI PN: VGS-25-24	25W
CUI PN: VGS-50-24	50W
CUI PN: VGS-75-24	75W
TDK-Lambda PN: LS150-24	150W

Table 6-5: Recommended Switching Power Supplies

Power Output		
28W		
80W		
115W		

Table 6-6: Recommended Linear Regulated Power Supplies

S

Linear U	pregulated Power Supplies	Power Output
	Acopian PN: U24Y500	120W
	Acopian PN: U24Y350	84W

Table 6-7: Recommended Linear Unregulated Power Supplies

Fuses (Slow Blow Type)
Bus Fuse: 4A
Logic Power Fuse: 1A

Table 6-8: Fuses

7.1 I/O Timing Diagrams

The opto-isolated digital inputs require a minimum of 2ms of time to guarantee that the input signal is registered by the drive. This is an important consideration to take into account, especially if limit switches are used. If limit switches are used, careful consideration should be used to prevent missed triggering due to high velocities. Output timing assumes 10K Ω load.

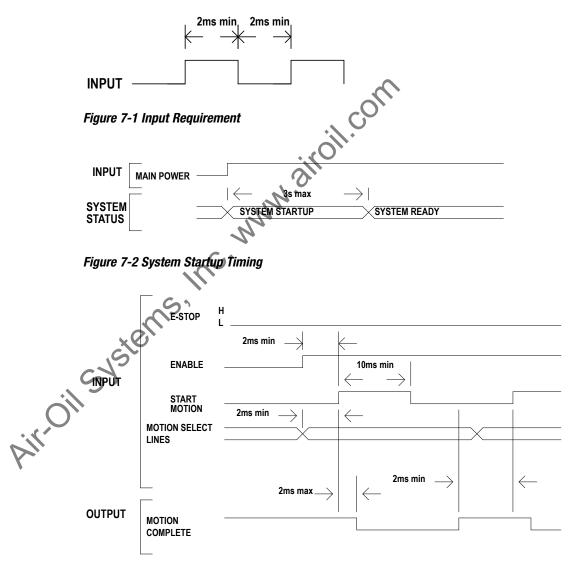
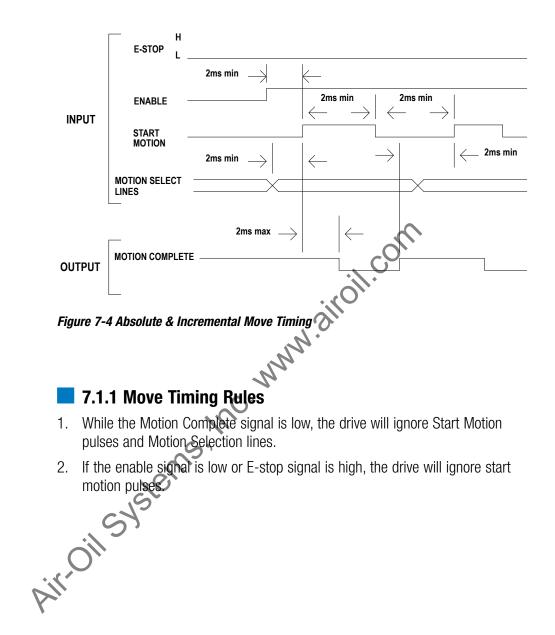



Figure 7-3 Jog Move Timing

8.1 Move Select Logic Table

The three operating modes, 4/8/16 move commands, require digital inputs to select the desired move for execution. The digital inputs are called Move Select 1 through 4 (MS1-MS4) in the digital input map. To select the desired move command refer to the three logic tables below.

NOTE 1: MS# stands for Move Select #

NOTE 2: 1 = 0n; 0 = Off

4 Move Cor	nmands Mode	Logic Table
MOVE	MS1	MS2
1	0	
2	1	0
3	0	
4		1

Table 8-1: 4 Move Commands Mode Logic

	8 Move Commands Mode Logic Table			able
	MOVE	MS1	MS2	MS3
	ST-	0	0	0
(2	1	0	0
lia	3	0	1	0
, O`	4	1	1	0
NIT	5	0	0	1
Y	6	1	0	1
	7	0	1	1
	8	1	1	1

Table 8-2: 8 Move Commands Mode Logic

	16 Move Co	mmands Mode	Logic Table	
MOVE	MS1	MS2	MS3	MS4
1	0	0	0	0
2	1	0	0	0
3	0	1	0	0
4	1	1	0	0
5	0	0	1	0
6	1	0	1	0
7	0	1	1	0
8	1	1	CON.	0
9	0	0	• • 0	1
10	1	0 . (1
11	0	1, 0	0	1
12	1	N	0	1
13	0	N 0	1	1
14	1	. 0	1	1
15	0	1	1	1
16	c1.	1	1	1

Table 8-3: 16 Move Commands Mode Logic

9.1 LED Codes

LED Indicators	
Green, Off	Motor is not powered
Green, On	Motor is powered
Red, On and Solid	A critical fault has occured
Red, On and Blinking	A safety fault has occured

Table 9-1: LED Indicators

To clear a fault, the enable input needs to be lowered, and then raised. Faults can also be cleared by the PC software. Faults that result in a blinking red LED indicator, are cleared automatically once the fault condition is no longer present.

9.2 Fault Descriptions and Recovery

Faults are broken up into safety faults and critical faults. Safety faults are configurable. If a safety fault is enabled and configured for disable motor, the fault will be latched until it is cleared in the same manner as the critical faults. If the fault is configured as a stop motion, the fault will be cleared automatically once the fault condition is no longer present. All critical faults will disable the motor when they occur. To clear these faults, the fault condition cannot be present. The enable input must be lowered, then raised.

(SYS	
lia		Safety Faults Table
×ir.	Positive Limit Switch	Positive limit switch has been reached. If configured as a stop motion, motion will be allowed in the reverse direction. The fault will be cleared once the positive limit switch input is no longer active and a move in the negative direction is in progress.
	Negative Limit Switch	The negative limit switch has been reached. If configured as stop motion, motion will be allowed in the positive direction. The fault will be cleared once the negative limit switch input is no longer active and a move in the positive direction is in progress.

	Safety Faults Table
Position Error	If an encoder is present, the position error fault can be
	enabled. If encoder position and commanded postion differ
	by a larger magnitude than the position error, the position
	error fault will be activated. If fault is configured as a stop
	motion, fault will be cleared on next move command.
	NOTE: If force is less than 100%, a position will not be
	triggered. Instead, it will stop and hold position (push mode).
E-Stop	If an input is configured as an E-stop and fault is enabled,
	the fault will be activated when the signal level on the pin is
	high. If fault is configured as a stop motion, it will be cleared
	once the E-stop input is lowered. Motion will not be allowed
	until E-stop has been cleared.
Table 9-2: Safety Faults	àlle I
	N.

Feedback Error	Critical Faults Table Feedback device is malfunctioning.
Over Current	If a short circuit occurs from output to ground, this fault will be triggered.
Motor Over Temp	Not implemented in this release.
Drive Over Temp	Drive temperature is greater than the maximum allowed temperature (75°C).
Drive Over Voltage	Main power voltage exceeds the maximum voltage (30V).
Drive Under Voltage	Main power voltage below the minimum voltage (18V).
Table 9-3: Critical Faults	

10.1 Troubleshooting

10.1.1 Troubleshooting the ACS Drive/Controller

		Troubleshooting Table
	SYMPTOM / TROUBLE	POSSIBLE CAUSE / RESOLUTION
	No communication to drive	1. Check power connection.
		2. Verify the wiring of the communication cable.
		3. Verify baud rate and serial port number.
		 Verify that the communication cable is plugged in securely.
		5. Verify that all drivers are up-to-date.
	Actuator cannot move load	1. The load is too large.
		2 There is too much friction.
	2	3. Side load is excessive.
	N C	4. Power supply does not have enough current capability.
	100.	5. Current limits are set too low.
	Drive is overheating	1. Ambient temperature is too high.
	*en1-	2. Cooling is insufficient.
	Actuator is operating erratically	1. Current is set to low.
	57	2. Following error is set too low.
Ó		3. Determine if power supply has enough current.
		4. Check to see if any faults are being generated.
AIT-OI		5. Verify that the drive has been configured properly for the actuator.
	No response from drive in I/O	1. Verify the enable signal is on.
	mode	2. Verify that all of the I/O are configured properly.
		3. Verify wiring to the actuator and drive.
	Red and Green LEDs on, both solid and no communication	1. Verify serial programming cable and cycle power to drive.
		2. Verify that the RJ12 cable is a reversed type.
		3. Verify all connections are plugged in securely.

Table 10-1: Troubleshooting Descriptions

Motors

There are currently three different motor selections available from Tolomatic–a NEMA 11, NEMA 17 and NEMA 23–available for operation with the ACS Drive/ Controller. Each motor is available with an optional differential incremental encoder. All motors come with a short 150mm cable and connector on the motor body.

	Tolomatic Moto	or Specifications	
SPEC	NEMA 11	NEMA 17	NEMA 23
Resistance	3.5 Ω	2.4 Ω	1.5 Ω
Inductance	2.3 mH	4.5 mH	3.7 mH
Rated Current	1 Arms	1.5 Arms	2 Arms
Maximum Torque	0.813 in-lbs	4.4 in lbs	6.25 in-lbs
Maximum RPM	1500 RPM	900 RPM	1050 RPM
Degree per Step	1.8°	1.8°	1.8°
Rotor Inertia	0.006 lb-in^2	0.028 lb-in^2	0.075 lb-in^2

Table A-1: Tolomatic Motor Specifications

Tolomatic Motor Part Numbers			
MOTOR	TOLOMATIC PART NUMBER		
NEMA 11 with Encoder	3604-1780		
NEMA 11 without Encoder	3604-1779		
NEMA 17 with Encoder	3604-1776		
NEMA 17 without Encoder	3604-1775		
NEMA 23 with Encoder	3604-1778		
NEMA 23 without Encoder	3604-1777		

Table A-2: Tolomatic Motor Part Numbers

Encoder Specifications			
MOTOR TYPE ENCODER CABLE CONNECTOR CABLE		CABLE TERMINAL	
		PART NUMBER	PART NUMBER
Bipolar Stepper,	Differential; 500 line	794954-6	50212-8000
1.8° per Step	(2000 count post quad)		

Table A-3: Encoder Specifications

TYCO Mating Co	NEMA11 Motor Connections TYCO Mating Connector: 51065-0600; Molex Terminals: 50212-8000			
WIRE COLOR	TYCO PIN	MOLEX PIN	SIGNAL	
Black	6	6	В -	
Green	3	4	B +	
Red	1	3	A +	
Blue	4	1	A -	

Table A-4: NEMA11 Motor Connection PIN Outs

NEMA17 Motor Connections TYCO Mating Connector: PHR-6; JST Terminals: SPH-002T-P0.5S			
WIRE COLOR	TYCO PIN	JST PIN	SIGNAL
Black	6	1	В -
Green	3, 0	3	B +
Red	N.	4	A +
Blue	4	6	A -

Table A-5: NEMA17 Motor Connection PIN Outs

TYEO	NEMA23 Motor Connections TYCO Mating Connector: XHP-6; JST Terminals: SXH-001T-P0.5			
WIRE CO		JST PIN	SIGNAL	
Black	6	1	В -	
Greer	3	3	B +	
Red	1	4	A +	
Blue	4	6	A -	
Table A-6: NEI	NA23 Motor Connection PIN Outs	;		

ENCODER Connections: US Digital PN E8P-500-197-D-D-M-B Molex Mating Connector: 510221-0600; Molex Contacts: 50079-8100			
WIRE COLOR	MOLEX PIN	SIGNAL	
Blue	2	ENC A+	
Orange	3	ENC A-	
Yellow	5	ENC B+	
Gray	6	ENC B-	
Black	1	Signal Ground	
Red	4	+5VDC	

Table A-7: Encoder Connections and Connector PIN Outs

Product Warranty

Tolomatic, Inc. warrants all products manufactured by it to be free from defects in material and workmanship for a period of one year from date of shipment by Tolomatic. If, within this period, any product is proven to be defective by Tolomatic, the product will either be repaired or replaced at Tolomatic's option.

This warranty shall not apply to:

- 1. Products not manufactured by Tolomatic. Warranty of these products will conform and be limited to the warranty actually extended to Tolomatic by its supplier.
- 2. Damage to the product caused by circumstances beyond the control of Tolomatic, such as negligence, improper maintenance or storage.
- 3. This warranty shall be void in the case of: any repairs or alterations made to the product by parties other than Tolomatic.

The foregoing warranties are exclusive and in the of all other express and implied warranties. Tolomatic is not subject to any other obligations or liabilities for

.ea. .toan

Air-Oil Systems, Inc. MMM. airoil.com

Copyright © 2011 Tolomatic, Inc. All rights Reserved.

All brand and product names are trademarks of their respective owners. Information in this document is believed to be accurate at time of publication.

201102031630

Air-Oil Systems, Inc. MMM. airoil.com

3800 County Road 116, Hamel, MN 55340 Phone: 763.478.8000 Toll Free: 1.800.328.2174 Fax: 763.478.8080 Email: help@tolomatic.com **www.tolomatic.com**