

DESIGNING AND MANUFACTURING CUSTOM CYLINDERS FOR OVER 100 YEARS.

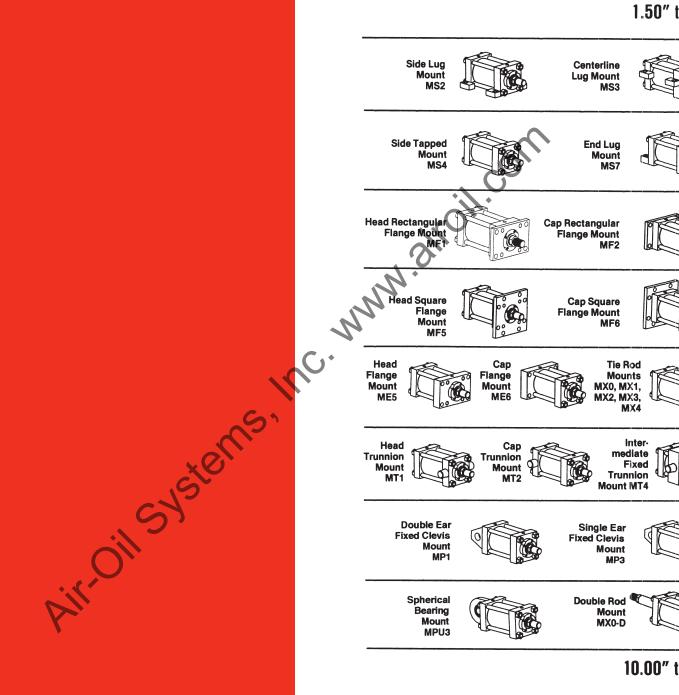
Designed and built for the demanding applications of the 21st century.

Today, many industrial applications demand more from hydraulic and pneumatic cylinders than ever before.

Greater pressures. Higher speeds. Closer tolerances. Zero leakage performance. Servo/proportional system response. Meeting these high performance demands requires true premium-quality cylinders... such as the product line offered by Hanna Cylinders.

For over a century, Hanna has earned a reputation as **industry innovators.** We continually strive to stay on the leading edge of motion control technology by utilizing the latest in state-of-theart designs and materials in our products. What's more, only Hanna Cylinders offers a single source for tie-rod, mill-type and rotating cylinders, as well as custom welded units.

Capabilities. Hanna has over 100 years of experience in engineering and manufacturing custom cylinders. There is no cylinder too big or too small — from 1.5 to 40 inch bore to 400 inch stroke and high-pressure applications up to 10,000 psi. In house painting, specialty coatings, large machining centers, boring mills, honing equipment, 3D modeling, stress calculations, special materials, special seals, ASME U stamp, 10 CFR 50, harsh environment applications and complex cylinders. Every cylinder is 100% tested. In our 170,000-square-foot facility with 25-ton crane capacity, state-of-the-art ERP and quality systems, we can handle all of your cylinder requirements.


Series 2H for Heavy-Duty Service ■ 1.50" – 14.00" Bores Pressure Ratings Up to 3,000 PSI ■ N.F.P.A. Interchangeability – 22 Mounting Styles

■ 1.50" – 6.00" Bores Pressure Ratings Up to 1.800 PSI ■ N.F.P.A. Interchangeability – 24 Mounting Styles

Series 3L for Medium-Duty Service

SERIES 2H HEAVY-DUTY HYDRAULIC CYLINDERS

MS2-ME5-ME6	
HOW TO ORDER SERIES 3L MEDIUM-DUTY HYDRAULIC CYLINDERS TECHNICAL INFORMATION INSTALLATION, OPERATION AND MAINTENANCE DATA MOUNTING ACCESSORIES, OPTIONS	

	O" Bores Description	Page No	0.
	MS2 MS3	Side Lug Mount	
	MS4 MS7	Side Tapped Mount	8 10
	MF1 MF2	Head Rectangular Flange Mount Cap Rectangular Flange Mount	
	MF5 MF6	Head Square Flange Mount Cap Square Flange Mount	
	ME5 ME6 MXO-1-2-3-4	Head Flange Mount Cap Flange Mount Tie Rod Mounts	22
	MT1 MT2 MT4	Head Trunnion Mount Cap Trunnion Mount Intermediate Fixed Trunnion Mount	28
	MP1 MP3	Fixed Double Ear Clevis Mount Fixed Single Ear Clevis Mount	
	MPU3 MXO-D	Spherical Bearing Mount Double Rod Mount	34 36
thru 14.	OO" Bores Mp1-MT1-MT	[4	38

Series 2H and 3L Hydraulic Cylinders

Series 2H Hydraulic Cylinders for Heavy-Duty Service

Hanna's Series 2H heavy-duty hydraulic cylinders have been designed for today's higher pressures and faster moving machinery applications.

Ruggedly built, 2H cylinders incorporate many fieldproven design features that assure trouble-free performance for millions of cycles. Included are Hanna's unique non-metallic Duralon® rod bearing, and our glass-filled Teflon® O-ring energized piston seal with two bronze-filled bearing strips, completely eliminating metal-to-metal contact at bearing surfaces. This assures long life and extremely low friction. In addition, it makes standard Series 2H cylinders the most suitable units available for applications that demand ruggedness, precision, zero leakage and dayin, day-out performance.

Series 2H cylinders give you virtually unlimited flexibility in machinery design, with a full range of bore sizes (1.50" through 14.00"*) offered. Developed for pressure ratings up to 3000 p.s.i., 2H cylinders are available in 22 N.F.P.A. mounting styles. S.A.E. porting is available at no extra cost.

* Refer to Series 3H Catalog 911 for bore sizes over 14.00". Consult factory for other special requirements.

Duralon is a Trademark of Rexnord, Inc. Teflon and Dacron are Trademarks of DuPont Company

Series 2H Features and Benefits

1. Piston Rod End

Integral thread construction, precision-machined for close concentricity. Studded rod ends are available.

2. Duralon Rod Bearing

Hanna's high-tech Duralon rod bearing is designed to perform under poorly lubricated, high-load conditions. The exact combination of woven Tetion and Dacron®, plus the fiberglass structural shell, increases load-carrying capabilities and eliminates "cord-flow" associated with Teflon. Duralon bearings are capable of sustaining much higher compressive loads than either bronze or cast iron, have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

3. Gland Construction

Two-piece (gland plus retainer plate), bolted-on or full-face retainer design. Packings may be captive in the gland or located in the head.

4. Rod Seal

Series 2H cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance. Viton U-cup is available for use with non-petroleum based fluids or for higher temperature service.

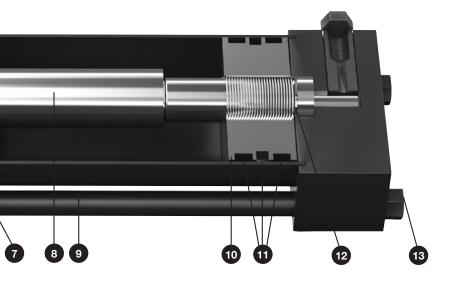
mc. www.airc,

Steel heads are precision-machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

3

6. Cushion Check Seals

Self-aligning, full-floating design, the cushion check seals are closely fitted to cushion sleeve and spear. The seals serve as both cushion seal and check valve, providing effective cushioning and fast breakaway.


7. Tube Seal

Buna-N O-ring seal. Viton available for use with nonpetroleum based fluids, or for higher temperature service.

8. Piston Rod

Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failures. The rods provide 100,000 minimum yield strength in diameters up to 3.50"; 59,000 average yield strength in 4.00" diameter and above. All sizes are hard chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish.

Series 2H and 3L Hydraulic Cylinders

9. Tubing

Steel tubing is precision-honed to a 16-20 micro-inch finish for close tolerance between piston bearing and tube wall.

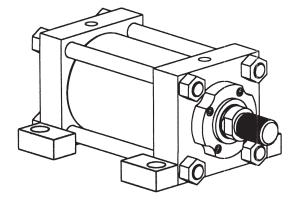
10. Piston

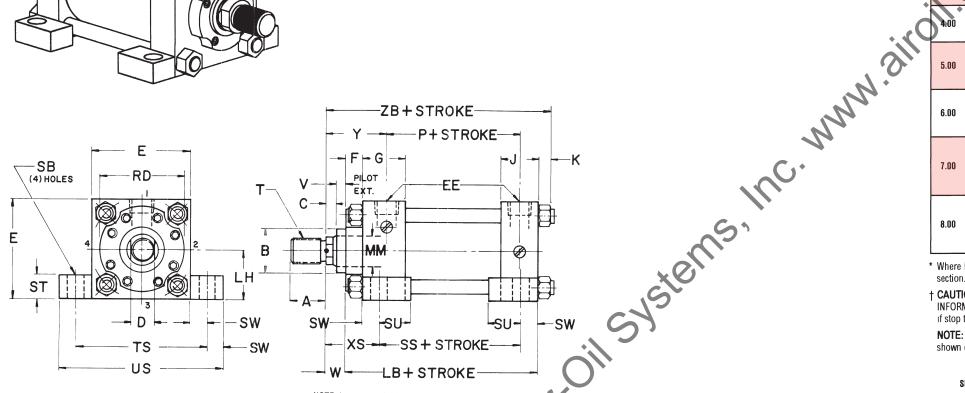
One-piece piston of high impact-resistant ductile iron threaded to piston rod, and furnished with breakaway spirals on each side.

11. Piston Sealing System

Hanna's glass-filled Teflon, O-ring energized piston seal provides a positive seal without problems such as rollover or extrusion that are associated with U-cup type seals. Bronze-filled bearing strips provide non-metallic bearing points on the piston, assuring long life and extremely low friction.

12. Piston-to-Rod Connection


Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.


13. Tie Rods

Made from high-strength steel, the tie rods are pre-stressed for fatigue resistance.

SERIES 2H 1.50"-8.00" Bores MS2 Side Lug Mount

(For 10.00" - 14.00" Bores, see Page 38)

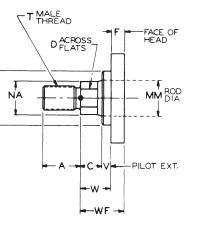
NOTE: Lug mounted cylinders should be fastened at one end by using fitted bolts, a thrust key or by dowel pins. This will eliminate the tendency of the cylinder to shift when pushing or pulling

These Dimensions are Constant Regardless of Rod Diameter

	E	LH	EE		F	G	J	К	LB	Р	SB	SS	ST	SU	SW	TS	US
BORE		006 008	SAE Straight thread	NPTF**												±.010	
1.50	2.50	1 250	#8(750-16)	1/2	38	1.75	1 50	.31	5 00	2.88	438	3.88	50	.94	38	3.25	4 00
2.00	3.00	1 500	#8(750-16)	1/2	62	1 75	1 50	44	5.25	2.88	.562	3 62	.75	1.25	.50	4.00	5.00
2.50	3 50	1 750	#8(750-16)	1/2	62	1.75	1 50	.44	5.38	3.00	.812	3.38	94	1.56	.69	4.88	6.25
3.25	4 50	2 250	#12 (1 062-12)	3/4	75	2 00	1 75	56	6 25	3 50	812	4 12	94	1 56	69	5 88	7 25
4.00	5.00	2 500	#12 (1 062-12)	3/4	88	2 00	1 75	56	6 62	3 75	1.062	4 00	1 19	2.00	.88	6.75	8.50
5.00	6 50	3 250	#12 (1 062-12)	3/4	.88	2 00	1.75	75	7 12	4.25	1.062	4 50	1.19	2.00	.88	8.25	10 00
6.00	7 50	3 750	#16 (1 312-12)	1	1 00*	2 25	2 25	88	8 38*	4 88	1 312	5.12	1 44	2 50	1.12	9.75	12 00
7.00	8 50	4 250	#20 (1.625-12)	1 ¼	1 00	2 75	2 75	1 00	9 50	5.38	1 562	5 75	1 69	2.88	1 38	11 25	14 00
8.00	9 50	4 750	#24 (1 875-12)	1 ½	1 00	3 00	3 00	1 06	10 50	6.12	1 562	6 75	1 69	2 88	1 38	12 25	15 00

* With (K) Rod F = 88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

Dimensions are Affected by the Rod Diameter

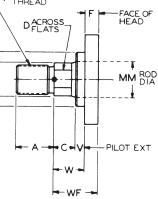

CI	LINDER									T (THREAD)							
BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM ROD DIA.	RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	XS	Ŷ	ZB	PSI Rating
1.50	D F	62 1 00	75 1 12	1 125 1 500	38 50	50 88	62 1.00	-	44-20 75-16	50-20 88-14	44-20 75-16	25 50	62 1 00	1 38 1 75	2 00 2 38	5 94 6 31	3000 3000
2.00	F G	1 00 1.38	1 12 1 62	1 500 2 000	50 62	88 1 12	1 00 1 38	-	75-16 1 00-14	.88-14 1 25-12	75-16 1.00-14	25 38	75 1 00	1.88 2 12	2.38 2 62	6 44 6 69	3000 3000
2.50	F G H	1 00 1 38 1 75	1 12 1 62 2 00	1 500 2 000 2 375	.50 62 75	88 1 12 1 50	1 00 1 38 1.75	-	75-16 1 00-14 1 25-12	.88-14 1 25-12 1.50-12	75-16 1 00-14 1.25-12	25 38 50	75 1.00 1 25	2 06 2.31 2 56	2 38 2 62 2.88	6 56 6 81 7 06	3000 3000 3000
3.25	G H J	1 38 1 75 2 00	1 62 2 00 2 25	2 000 2 375 2 625	62 75 88	1 12 1.50 1 69	1 38 1.75 2.00	3 50 3.50 3 88	1 00-14 1 25-12 1 50-12	1 25-12 1.50-12 1 75-12	1 00-14 1 25-12 1.50-12	25 .38 38	88 1 12 1.25	2.31 2 56 2 69	2 75 3.00 3.12	7 69 7.94 8 06	3000 3000 3000
4.00	H J K	1.75 2 00 2 50	2 00 2 25 3 00	2 375 2 625 3 125	75 .88 1 00	1 50 1.69 2 06	1 75 2.00 2 50	3 50 4 25 4 25	1 25-12 1 50-12 1.88-12	1 50-12 1 75-12 2 25-12	1.25-12 1 50-12 1 88-12	.25 •25 38	1 00 1 12 1.38	2 75 2 88 3.12	3.00 3 12 3 38	8 19 8 31 8 56	3000 3000 3000
5.00	JKLM	2 00 2 50 3.00 3.50	2 25 3 00 3 50 3 50	2 625 3 125 3 750 4 250	88 1.00 1 00 1 00	1 69 2 06 2 62 3 00	2 00 2 50 3 00 3.50	4 25 4.25 5 62 5 62	1 50-12 1 88-12 2 25-12 2 50-12	1 75-12 2 25-12 2 75-12 3.25-12	1 50-12 1 88-12 2 25-12 2 50-12	25 38 38 38	1 12 1.38 1 38 1 38	2 88 3.12 3 12 3 12	3 12 3 38 3 38 3.38	9 00 9 25 9 25 9 25 9 25	3000 3000 3000 3000
6.00	K L M N	2.50 3.00 3 50 4 00	3 00 3 50 3 50 4 00	3 125 3 750 4 250 4 750	1 00 1 00 1.00 1 00	2 06 2.62 3 00 3 38	2 50 3 00 3 50 4 00	4 25 6 38 6.38 6 38	1 88-12 2.25-12 2 50-12 3 00-12	2 25-12 2 75-12 3 25-12 3 75-12	1 88-12 2 25-12 2 50-12 3 00-12	38 25 25 .25	1 38 1 25 1 25 1 25 1 25	3 38 3 38 3.38 3 38 3 38	3 50 3 50 3 50 3 50 3 50	10 50 10 50 10 50 10 50	3000 3000 3000 3000
7.00	L M P R	3.00 3 50 4 00 4 50 5 00	3 50 3 50 4 00 4 50 5 00	3 750 4 250 4 750 5 250 5 750	1.00 1 00 1 00 1 00 1 00 1 00	2.62 3 00 3.38 3 88 4 25	3 00 3 50 4.00 4.50 5.00	6 38 6 38 6 38 7 50 7 50	2 25-12 2 50-12 3 00-12 3 25-12 3 50-12	2.75-12 3 25-12 3 75-12 4.25-12 4.75-12	2 25-12 2 50-12 3 00-12 3 25-12 3 50-12	25 25 25 25 25 25	1 25 1 25 1 25 1 25 1 25 1 25	3 62 3 62 3 62 3 62 3 62 3 62	3 81 3 81 3 81 3.81 3.81 3.81	11 75 11 75 11 75 11 75 11.75 11 75	3000 3000 3000 3000 3000
8.00	M N P R S	3 50 4 00 4 50 5.00 5.50	3 50 4 00 4 50 5 00 5 50	4 250 4 750 5.250 5 750 6 250	1 00 1 00 1 00 1 00 1 00 1 00	3.00 3 38 3 88 4.25 4.62	3 50 4 00 4 50 5 00 5 50	6.38 6.38 8.00 8 00 8 00	2 50-12 3 00-12 3 25-12 3 50-12 4 00-12	3 25-12 3 75-12 4 25-12 4.75-12 5.25-12	2 50-12 3 00-12 3.25-12 3 5 0-12 4 00-12	25 25 25 25 25 25	1 25 1 25 1 25 1 25 1 25 1 25	3.62 3 62 3 62 3 62 3 62 3 62	3 94 3 94 3 94 3 94 3 94 3 94	12 81 12 81 12 81 12.81 12.81 12.81	3000 3000 3000 3000 3000

section.

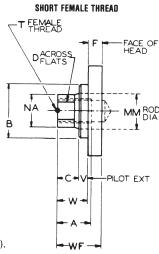
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine If stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NA

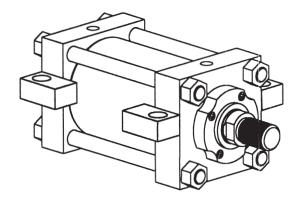

Series 2H and 3L Hydraulic Cylinders

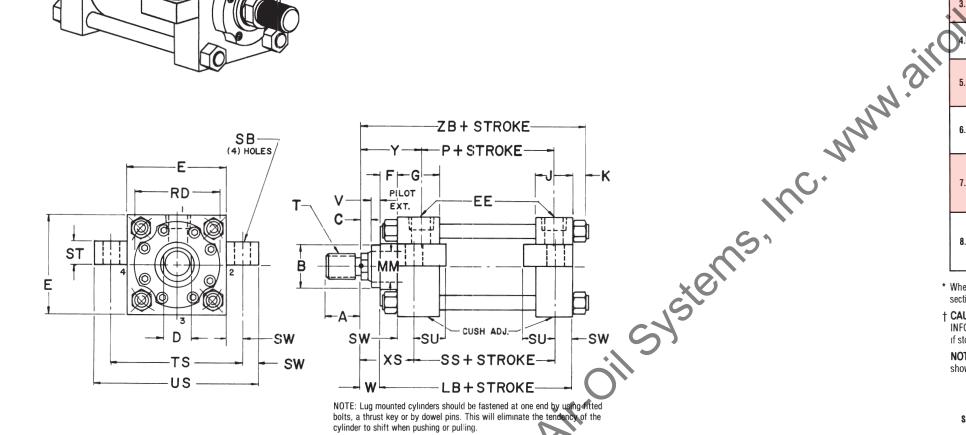
MS2


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA

STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

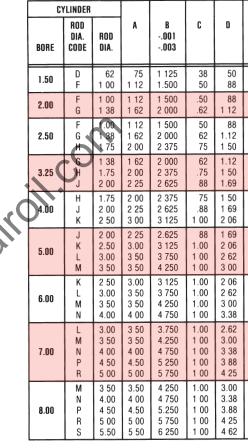
T MALE




NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5 50 rods)

Series 2H and 3L Hydraulic Cylinders

SERIES 2H 1.50"-8.00" Bores **MS3 Centerline Lug Mount**



These Dimensions are Constant Regardless of Rod Diameter

	E	EE		F	G	J	K	LB	Р	SB	SS	ST	SU	SW	TS	US
BORE		SAE STRAIGHT THREAD	NPTF**												±.010	
1.50	2.50	#8 (.750-16)	1/2	38	1 75	1 50	.31	5 00	2 88	438	3.88	.50	94	.38	3.25	4 00
2.00	3 00	#8 (750-16)	1/2	62	1.75	1 50	44	5.25	2.88	562	3 62	7:5	1.25	50	4.00	5.00
2.50	3 50	#8 (750-16)	1/2	62	1.75	1 50	44	5 38	3 00	812	3.38	94	1 56	.69	4 88	6.25
3.25	4 50	#12 (1 062-12)	3/4	75	2 00	1 75	56	6 25	3 50	812	4 12	94	1 56	69	5.88	7.25
4.00	5 00	#12 (1 062-12)	3/4	.88	2 00	1 75	56	6 62	3 75	1 062	4.00	1 19	2 00	.88	6.75	8.50
5.00	6.50	#12 (1.062-12)	3/4	88	2 00	1 75	.75	7 12	4.25	1 062	4.50	1.19	2 00	88	8.25	10.00
6.00	7 50	#16 (1 312-12)	1	1 00*	2.25	2 25	88	8.38*	4 88	1.312	5 12	1.44	2 50	1.12	9.75	12 00
7.00	8 50	#20 (1 625-12)	1 ¼	1.00	2.75	2 75	1 00	9.50	5 38	1.562	5 75	1 69	2.88	1 38	11.25	14 00
8.00	9 50	#24 (1 875-12)	1 ½	1.00	3 00	3.00	1 06	10 50	6 12	1.562	6 75	1.69	2 88	1 38	12 25	15 00

* With (K) Rod F = 88, LB = 8.25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

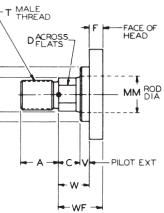
Dimensions are Affected by the Rod Diameter

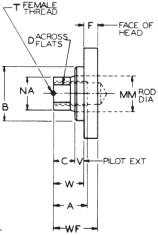
* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

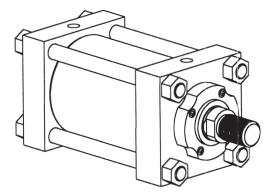
NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus 062 (1.38-5.50 rods)

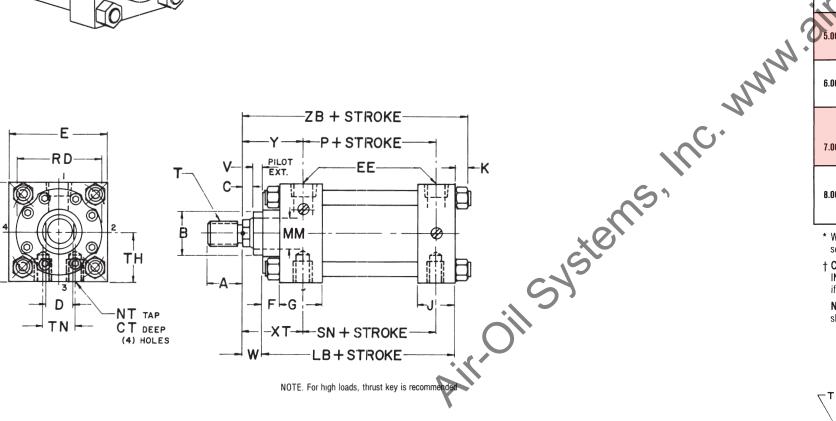

NA


Series 2H and 3L Hydraulic Cylinders

			T (THREAD)							
MM Rod DIA.	RD*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female SF	v	w	XS	Ŷ	ZB	PSI Rating†
.62	-	44-20	50-20	44-20	25	.62	1 38	2.00	5.94	3000
1 00		75-16	.88-14	75-16	50	1 00	1 75	2.38	6.31	3000
1.00	-	75-16	88-14	75-16	25	75	1 88	2 38	6 44	3000
1.38		1 00-14	1 25-12	1 00-14	38	1 00	2 12	2 62	6 69	3000
1 00		.75-16	88-14	75-16	25	.75	2 06	2 38	6.56	3000
1 38		1.00-14	1.25-12	1 00-14	38	1.00	2 31	2 62	6.81	3000
1 75		1 25-12	1 50-12	1.25-12	.50	1 25	2.56	2.88	7 06	3000
1 38	3 50	1.00-14	1 25-12	1 00-14	25	88	2.31	2.75	7 69	3000
1 75	3 50	1.25-12	1 50-12	1 25-12	.38	1 12	2.56	3.00	7 94	3000
2 00	3.88	1 50-12	1.75-12	1 50-12	.38	1.25	2 69	3 12	8.06	3000
1 75	3 50	1 25-12	1 50-12	1 25-12	.25	1 00	2.75	3.00	8 19	3000
2.00	4 25	1 50-12	1 75-12	1 50-12	25	1 12	2.88	3.12	8 31	3000
2 50	4 25	1.88-12	2.25-12	1 88-12	38	1 38	3 12	3 38	8.56	3000
2.00	4 25	1 50-12	1 75-12	1 50-12	25	1 12	2.88	3.12	9 00	3000
2.50	4 25	1.88-12	2 25-12	1 88-12	38	1 38	3.12	3 38	9.25	3000
3.00	5.62	2.25-12	2 75-12	2 25-12	38	1.38	3 12	3.38	9 25	3000
3.50	5 62	2.50-12	3 25-12	2 50-12	38	1 38	3 12	3 38	9 25	3000
2.50 3 00 3.50 4 00	4 25 6 38 6.38 6.38	1.88-12 2.25-12 2.50-12 3 00-12	2 25-12 2.75-12 3 25-12 3 75-12	1 88-12 2.25-12 2.50-12 3 00-12	38 25 .25 .25	1 38 1.25 1.25 1 25	3 38 3 38 3 38 3 38 3 38	3 50 3 50 3 50 3 50 3 50	10 50 10.50 10.50 10 50	3000 3000 3000 3000
3 00 3 50 4 00 4 50 5.00	6.38 6.38 6.38 7 50 7 50	2.25-12 2 50-12 3 00-12 3.25-12 3 50-12	2.75-12 3.25-12 3 75-12 4 25-12 4 75-12	2.25-12 2.50-12 3 00-12 3 25-12 3 50-12	25 25 25 25 25 25	1 25 1 25 1 25 1 25 1 25 1.25	3 62 3.62 3.62 3 62 3 62	3 81 3 81 3.81 3 81 3 81 3 81	11 75 11.75 11 75 11.75 11.75 11 75	3000 3000 3000 3000 3000
3.50 4 00 4.50 5 00 5.50	6.38 6.38 8.00 8 00 8 00	2.50-12 3 00-12 3 25-12 3 50-12 4.00-12	3.25-12 3 75-12 4 25-12 4 75-12 5.25-12	2 50-12 3 00-12 3.25-12 3 50-12 4 00-12	25 25 25 25 25 25	1 25 1.25 1.25 1 25 1 25 1 25	3.62 3 62 3 62 3 62 3 62 3 62	3 94 3.94 3 94 3 94 3 94 3 94	12 81 12.81 12 81 12 81 12 81 12 81	3000 3000 3000 3000 3000 3000

STANDARD ROD END STYLES


INTERMEDIATE MALE THREAD



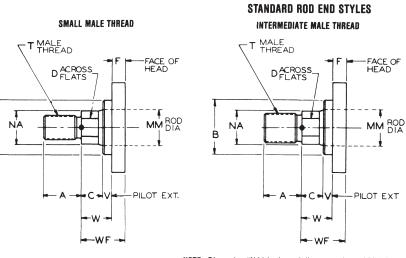
E

SERIES 2H 1.50"-8.00" Bores MS4 Side Tapped Mount

These Dimensions are Constant Regardless of Rod Diameter

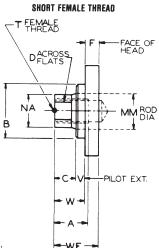
	E	TH	EE		F	G	J	K	LB	NT	Р	SN	TN
BORE		006 008	SAE Straight thread	NPTF**									±.010
1.50	2 50	1 250	#8 (.750-16)	1/2	38	1.75	1 50	31	5 00	38-16	2.88	2.88	.75
2.00	3 00	1.500	#8 (750-16)	1/2	.62	1 75	1 50	44	5.25	50-13	2.88	2.88	.94
2.50	3 50	1 750	#8 (750-16)	1/2	62	1 75	1 50	.44	5.38	62-11	3.00	3 00	1.31
3.25	4.50	2 250	#12 (1 062-12)	3/4	75	2.00	1 75	56	6 25	75-10	3.50	3 50	1 50
4.00	5 00	2 500	#12 (1 062-12)	3/4	88	2.00	1.75	56	6 62	1 00-8	3 75	3 75	2.06
5.00	6 50	3 250	#12 (1 062-12)	3/4	88	2.00	1 75	75	7 12	1 00-8	4 25	4.25	2 94
6.00	7.50	3.750	#16 (1 312-12)	1	1 00*	2.25	2.25	88	8 38*	1 25-7	4.88	5 12	3.31
7.00	8 50	4 250	#20 (1 625-12)	1¼	1 00	2.75	2.75	1.00	9 50	1 50-6	5 38	5.88	3.75
8.00	9 50	4 750	#24 (1.875-12)	1½	1 00	3 00	3 00	1.06	10 50	1 50-6	6.12	6.62	4.25

* With (K) Rod F = .88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

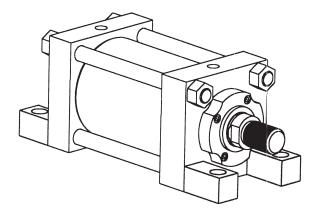

Dimensions are Affected by the Rod Diameter

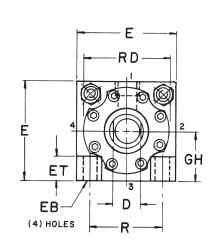
	CI	LINDER									T (THREAD)								
	BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Rod Dia.	RD*	SMALL Male Sm	INTER- MEDIATE Male IM	SHORT Female Sf	V	w	CT	ХТ	Ŷ	ZB	PSI Rating†
	1.50	D F	62 1.00	75 1 12	1 125 1.500	38 50	50 88	62 1 00	-	44-20 75-16	.50-20 .88-14	.44-20 75-16	.25 .50	62 1.00	.56 44	2 00 2.38	2 00 2.38	5.94 6.31	3000 3000
	2.00	F G	1 00 1.38	1 12 1 62	1.500 2.000	50 .62	.88 1.12	1 00 1.38	-	75-16 1 00-14	.88-14 1 25-12	.75-16 1.00-14	25 .38	75 1.00	62 .44	2.38 2.62	2.38 2 62	6.44 6.69	3000 3000
	2.50	F G H	1.00 1.38 1.75	1 12 1.62 2 00	1.500 2.000 2 375	50 62 .75	.88 1 12 1.50	1 00 1.38 1 75	-	75-16 1 00-14 1 25-12	.88-14 1.25-12 1.50-12	75-16 1.00-14 1.25-12	.25 .38 50	.75 1.00 1 25	69 44 .44	2.38 2.62 2.88	2.38 2 62 2 88	6 56 6 81 7 06	3000 3000 3000
	3.25	Gн	1.38 1.75 2.00	1 62 2 00 2.25	2 000 2.375 2.625	.62 75 .88	1.12 1 50 1.69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1 75-12	1.00-14 1.25-12 1.50-12	25 .38 .38	.88 1.12 1 25	81 81 .75	2 75 3 00 3.12	2 75 3.00 3.12	7 69 7.94 8.06	3000 3000 3000
•	4.00	Н Ч	1.75 2 00 2.50	2.00 2 25 3 00	2.375 2 625 3 125	75 .88 1.00	1 50 1.69 2 06	1 75 2.00 2.50	3 50 4.25 4.25	1 25-12 1.50-12 1.88-12	1 50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	25 .25 38	1.00 1.12 1.38	88 .75 75	3.00 3.12 3 38	3.00 3 12 3 38	8.19 8.31 8.56	3000 3000 3000
?	5.00	J K L M	2.00 2.50 3.00 3.50	2 25 3 00 3 50 3.50	2.625 3 125 3 750 4.250	.88 1.00 1.00 1.00	1.69 2 06 2 62 3 00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2 50-12	1.75-12 2.25-12 2.75-12 3 25-12	1.50-12 1.88-12 2 25-12 2 50-12	.25 38 38 .38	1.12 1 38 1.38 1.38	1.31 1.31 .81 .81	3 12 3 38 3 38 3 38 3 38	3.12 3 38 3 38 3.38	9.00 9.25 9.25 9.25 9.25	3000 3000 3000 3000
	6.00	K L M N	2 50 3.00 3 50 4.00	3 00 3 50 3.50 4 00	3 125 3 750 4 250 4 750	1.00 1.00 1.00 1.00	2 06 2.62 3.00 3 38	2.50 3.00 3.50 4.00	4 25 6.38 6.38 6.38	1.88-12 2.25-12 2 50-12 3.00-12	2.25-12 2 75-12 3.25-12 3.75-12	1.88-12 2 25-12 2 50-12 3 00-12	38 25 25 25	1.38 1 25 1 25 1 25 1 25	1 75 75 .94 94	3 50 3.50 3 50 3 50 3 50	3 50 3.50 3 50 3.50	10.50 10 50 10.50 10 50	3000 3000 3000 3000
	7.00	L M P R	3.00 3 50 4 00 4.50 5.00	3 50 3 50 4.00 4.50 5.00	3 750 4 250 4.750 5.250 5.750	1 00 1.00 1 00 1 00 1.00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4 50 5.00	6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3 00-12 3 25-12 3 50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2 25-12 2 50-12 3 00-12 3.25-12 3 50-12	25 25 25 .25 25	1 25 1 25 1.25 1.25 1.25 1 25	1 38 1 38 1.38 88 .88	3.81 3 81 3.81 3.81 3.81 3.81	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11 75 11 75	3000 3000 3000 3000 3000
	8.00	M N P R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5 00 5 50	4.250 4.750 5.250 5 750 6 250	1 00 1 00 1.00 1.00 1.00	3.00 3 38 3.88 4.25 4.62	3 50 4.00 4.50 5.00 5.50	6 38 6.38 8.00 8.00 8.00	2 50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3 75-12 4 25-12 4.75-12 5.25-12	2.50-12 3.00-12 3 25-12 3 50-12 4.00-12	.25 .25 .25 .25 .25 .25	1 25 1 25 1.25 1.25 1.25 1.25	2.00 2.00 1.38 1.38 1.38	3 94 3.94 3 94 3.94 3.94 3 94	3.94 3 94 3 94 3.94 3.94 3.94	12 81 12.81 12.81 12 81 12 81	3000 3000 3000 3000 3000

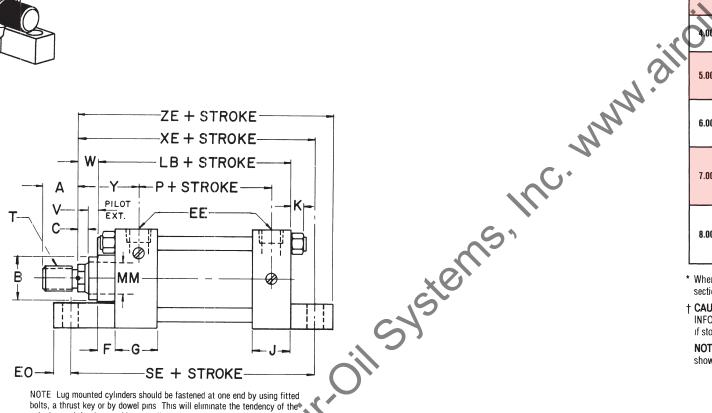
* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.


† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.



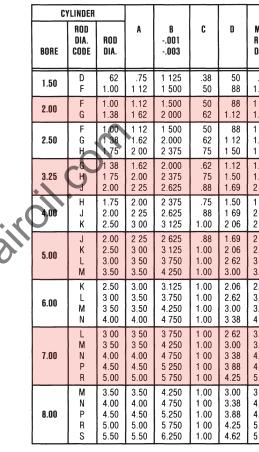

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)


Series 2H and 3L Hydraulic Cylinders

SERIES 2H 1.50"-8.00" Bores **MS7 End Lug Mount**

NOTE Lug mounted cylinders should be fastened at one end by using fitted bolts, a thrust key or by dowel pins This will eliminate the tendency of the cylinder to shift when pushing or pulling.

These Dimensions are Constant Regardless of Rod Diameter


	E	GH	EB	EE		EO	ET	F	G	J	K	LB	Р	B	SE
BORE		006 008		SAE Straight thread	NPTF**				_	-				±.010	UL
1.50	2.50	1 250	. 44	#8 (750-16)	1/2	.38	88	38	1 75	1.50	.31	5.00	2.88	1 63	6 75
2.00	3.00	1 500	56	#8 (750-16)	1/2	50	.94	62	1 75	1.50	44	5 25	2.88	2.05	7 12
2.50	3 50	1 750	.56	#8 (750-16)	1/2	50	94	62	1.75	1.50	.44	5.38	3.00	2.55	7 25
3.25	4 50	2 250	. 69	#12 (1 062-12)	3/4	62	1 25	.75	2.00	1 75	56	6.25	3 50	3.25	8 50
4.00	5 00	2 500	69	#12 (1 062-12)	3/4	62	1 19	88	2.00	1.75	56	6 62	3.75	3 82	8 88
5.00	6 50	3 250	94	#12 (1 062-12)	3/4	88	1 50	.88	2.00	1 75	75	7.12	4.25	4.95	10 12
6.00	7 50	3 750	1.06	#16 (1 312-12)	1	1.00	1.75	1 00*	2 25	2 25	88	8 38*	4.88	5.73	11 75
7.00	8 50	4 250	1.19	#20 (1 625-12)	1¼	1.12	1.88	1 00	2 75	2.75	1.00	9 50	5 38	6 58	13.12
8.00	9 50	4 750	1 31	#24 (1 875-12)	1½	1 25	2 00	1 00	3 00	3 00	1.06	10 50	6.12	7.50	14.50

CAUTION Check for interference between rod attachment and mounting lug

Specify longer than standard "C" dimension if necessary

* With (K) Rod F = 88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine If stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

STANDARD ROD END STYLES INTERMEDIATE MALE THREAD T MALE DACROSS NA. - W -

SMALL MALE THREAD

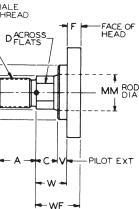
⊷w -•

-wF

-FACE OF HEAD

MM ROD

PILOT EXT

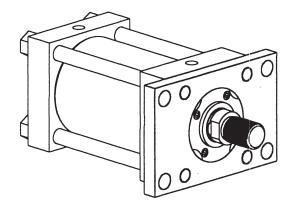

NA

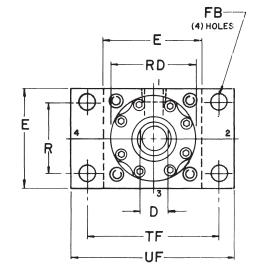
B

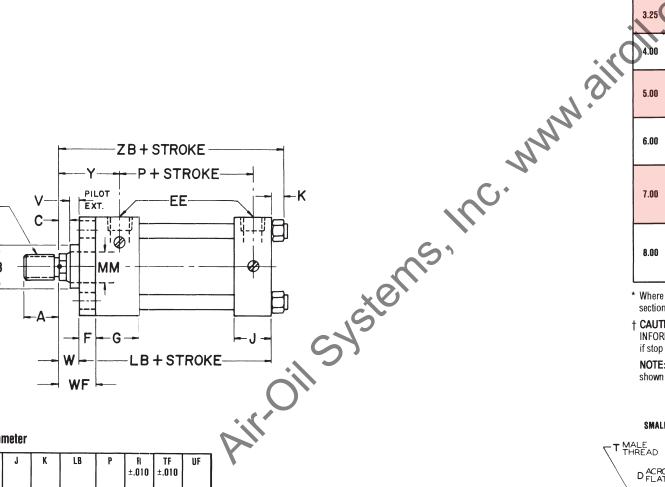
D ACROSS

Series 2H and 3L Hydraulic Cylinders

			T (THREAD)							
MM Rod Dia.	RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	XE	Y	ZE	PSI Rating†
.62	-	.44-20	50-20	.44-20	.25	.62	6.50	2.00	6 88	3000
.00		75-16	.88-14	75-16	50	1 00	6 88	2.38	7.25	3000
00	-	.75-16	.88-14	.75-16	.25	75	6 94	2 38	7.44	3000
.38		1.00-14	1 25-12	1.00-14	.38	1 00	7.19	2 62	7.69	3000
00	-	.75-16	88-14	.75-16	25	75	7.06	2.38	7.56	3000
.38	-	1 00-14	1 25-12	1.00-14	.38	1.00	7.31	2.62	7 81	3000
75	-	1.25-12	1.50-12	1.25-12	.50	1.25	7.56	2.88	8 06	3000
.38	3 50	1 00-14	1 25-12	1 00-14	.25	.88	8 25	2.75	8.88	3000
.75	3.50	1 25-12	1 50-12	1 25-12	38	1 12	8 50	3.00	9.12	3000
.00	3 88	1.50-12	1.75-12	1.50-12	38	1.25	8 62	3.12	9 25	3000
75	3 50	1.25-12	1.50-12	1.25-12	25	1.00	8.75	3.00	9 38	3000
00	4.25	1.50-12	1.75-12	1 50-12	25	1.12	8.88	3 12	9 50	3000
50	4.25	1.88-12	2.25-12	1.88-12	.38	1.38	9.12	3 38	9 75	3000
00 .50 00 .50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 38 .38	1.12 1.38 1.38 1.38	9.75 10.00 10.00 10.00	3 12 3.38 3.38 3.38 3.38	10.62 10.88 10 88 10 88	3000 3000 3000 3000
.50	4.25	1 88-12	2 25-12	1 88-12	38	1.38	11.31	3.50	12 31	3000
.00	6 38	2.25-12	2 75-12	2 25-12	25	1.25	11 31	3.50	12.31	3000
.50	6 38	2 50-12	3 25-12	2 50-12	25	1.25	11 31	3.50	12 31	3000
.00	6.38	3 00-12	3 75-12	3 00-12	25	1.25	11.31	3.50	12 31	3000
.00 .50 .00 .50 .00	6 38 6 38 6.38 7.50 7.50	2 25-12 2.50-12 3.00-12 3.25-12 3.50-12	2 75-12 3 25-12 3 75-12 4.25-12 4 75-12	2 25-12 2 50-12 3.00-12 3.25-12 3.50-12	.25 .25 25 25 .25	1.25 1 25 1.25 1.25 1.25 1.25	12.56 12.56 12.56 12.56 12.56	3.81 3.81 3.81 3.81 3.81 3.81	13 69 13.69 13 69 13 69 13 69 13 69	3000 3000 3000 3000 3000
50 .00 .50 .00 50	6 38 6 38 8 00 8.00 8 00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3 00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1 25 1.25 1 25 1.25 1.25 1 25	13 75 13.75 13.75 13.75 13.75 13.75	3.94 3 94 3 94 3.94 3.94 3.94	15.00 15 00 15.00 15.00 15.00	3000 3000 3000 3000 3000 3000




SHORT FEMALE THREAD -FACE OF HEAD DELATS NA PILOT EXT - W -


- Δ ----

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus 062 (1.38-5.50 rods)

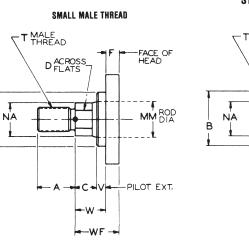
SERIES 2H 1.50"-8.00" Bores MF1 Head Rectangular Flange Mount

These Dimensions are Constant Regardless of Rod Diameter

	E	EE		F	FB	G	J	K	LB	Р	R	TF	UF
BORE		SAE Straight thread	NPTF**								±.010	±.010	0.
1.50	2.50	#8(750-16)	1/2	38	.438	1.75	1 50	31	5.00	2.88	1.63	3.43	4.25
2.00	3 00	#8(750-16)	1/2	62	562	1 75	1.50	.44	5.25	2 88	2.05	4.12	5 12
2.50	3.50	#8(750-16)	1/2	62	.562	1.75	1.50	44	5.38	3 00	2.55	4.62	5.62
3.25	4.50	#12 (1.062-12)	3/4	.75	.687	2.00	1 75	56	6.25	3.50	3.25	5.88	7.12
4.00	5 00	#12 (1.062-12)	3/4	88	687	2 00	1 75	.56	6.62	3.75	3.82	6.38	7 62
5.00	6 50	#12 (1 062-12)	3/4	.88	.938	2 00	1 75	75	7 12	4 25	4 95	8.19	9.75
6.00	7 50	#16 (1 312-12)	1	1 00	1 062	2 25	2 25	88	8 38*	4 88	5.73	9.44	11.25
7.00	8 50	#20 (1 625-12)	1 ¼	1 00	1 187	2 75	2 75	1.00	9.50	5 38	6.58	10.62	12.62
8.00	9.50	#24 (1.875-12)	1 ½	1 00	1 312	3 00	3 00	1.06	10.50	6.12	7.50	11 81	14 00

** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

CAUTION: This mounting style has reduced pressure ratings depending on application mode. For pressures which exceed those shown in the following page dimensional chart, HANNA recommends the use of ME5 mounting style, shown on page 20.


Dimensions are Affected by the Rod Diameter

	C	LINDER						
	BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Roi Dia
	1.50	D F	.62 1.00	75 1 12	1 125 1 500	.38 .50	.50 .88	.6: 1.0
	2.00	F G	1 00 1.38	1.12 1 62	1.500 2.000	.50 62	.88 1.12	1 0 1.3
	2.50	F G H	1.00 1.38 1.75	1.12 1.62 2.00	1 500 2 000 2 375	.50 .62 .75	.88 1.12 1.50	1.0 1.3 1.7
•	3.25	G H J	1.38 1 75 2.00	1 62 2.00 2.25	2.000 2 375 2 625	62 75 .88	1.12 1.50 1.69	1.3 1.7 2.0
3	4.00	Н Н	1.75 2.00 2.50	2 00 2.25 3 00	2 375 2.625 3.125	75 .88 1.00	1.50 1.69 2.06	1.7 2.0 2.5
	5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3 00 3.50 3 50	2 625 3.125 3.750 4.250	.88 1.00 1.00 1.00	1.69 2.06 2.62 3.00	2.0 2 5 3.0 3.5
	6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	3.125 3.750 4 250 4 750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.5 3.0 3.5 4.0
	7.00	L M P R	3.00 3.50 4.00 4.50 5.00	3.50 3.50 4.00 4.50 5.00	3.750 4 250 4.750 5.250 5 750	1.00 1.00 1.00 1.00 1.00	2.62 3 00 3.38 3.88 4.25	3.0 3 5 4.0 4.5 5.0
	8.00	M N P R S	3.50 4.00 4.50 5.00 5.50	3 50 4.00 4.50 5.00 5.50	4.250 4.750 5.250 5.750 6.250	1.00 1.00 1.00 1.00 1.00	3.00 3.38 3.88 4.25 4.62	3.5 4.0 4.5 5.0 5.5
	* Where I	RD is no	nt show	n sana	e retainer	is usor	I See F	RETA

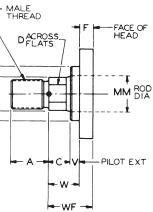
section.

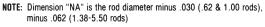
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

minus .062 (1.38-5.50 rods)

Series 2H and 3L Hydraulic Cylinders

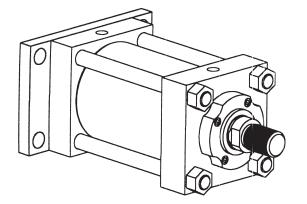

MF1

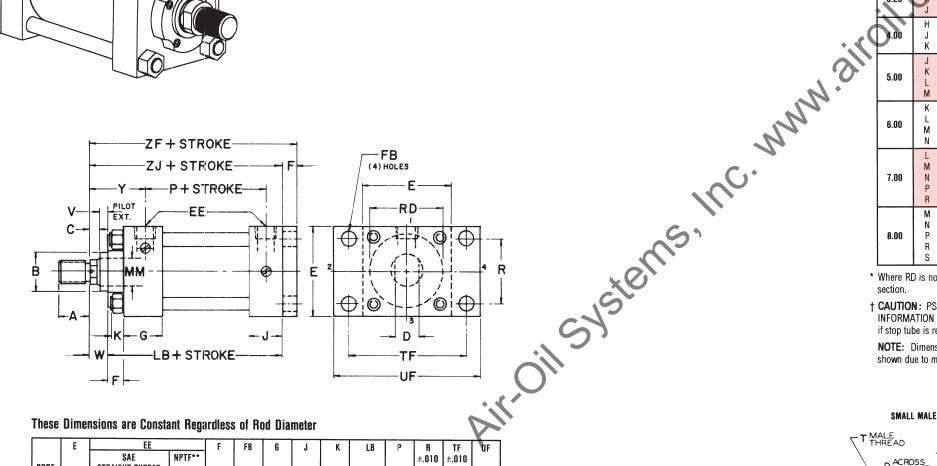

			T (THREAD)							
IM Od IA.	RD	SMALL Male SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	WF	Ŷ	ZB	PSI Rating†
.62 .00	-	.44-20 75-16	.50-20 .88-14	44-20 75-16	.25 .50	.62 1.00	1.00 1.38	2.00 2.38	5 94 6.31	1300 950
00 .38	-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 .38	.75 1.00	1.38 1.62	2.38 2.62	6.44 6.69	1950 1300
.00 .38 75	- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	75 1.00 1.25	1.38 1.62 1.88	2.38 2.62 2.88	6.56 6.81 7.06	1650 1250 925
.38 .75 .00	- -	1.00-14 1 25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	88 1 12 1.25	1.62 1.88 2.00	2.75 3.00 3 12	7 69 7.94 8.06	1375 1175 1050
.75 .00 .50	- - -	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 25 .38	1 00 1.12 1.38	1.88 2.00 2.25	3.00 3.12 3.38	8.19 8.31 8.56	1350 1200 950
.00 50 .00 .50	- - 5.62 5.62	1 50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	25 .38 38 .38	1 12 1.38 1.38 1.38	2.00 2.25 2.25 2.25	3.12 3.38 3.38 3.38	9.00 9.25 9.25 9.25 9.25	1000 850 250 250
.50 .00 .50 .00	- 6.38 6.38 6.38	1.88-12 2.25-12 2 50-12 3.00-12	2 25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.25 .25 .25 .25	1 25 1.25 1.25 1.25	2.25 2.25 2.25 2.25 2.25	3 50 3.50 3 50 3.50	10.50 10.50 10.50 10.50	900 250 250 250
.00 50 .00 .50 .00	6 38 6.38 6.38 7.50 7.50	2.25-12 2 50-12 3.00-12 3.25-12 3 50-12	2.75-12 3 25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3 25-12 3 50-12	25 25 25 .25 25 25	1 25 1.25 1.25 1.25 1.25 1.25	2.25 2.25 2 25 2 25 2 25 2 25 2 25	3.81 3.81 3 81 3 81 3 81 3 81	11.75 11 75 11 75 11.75 11.75 11.75	300 300 300 150 150
.50 .00 .50 .00 .50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3 50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3 50-12 4 00-12	.25 25 25 .25 .25 .25	1.25 1.25 1 25 1 25 1.25 1.25	2.25 2.25 2.25 2.25 2.25 2.25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	275 275 125 125 125 125

Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA

STANDARD ROD END STYLES

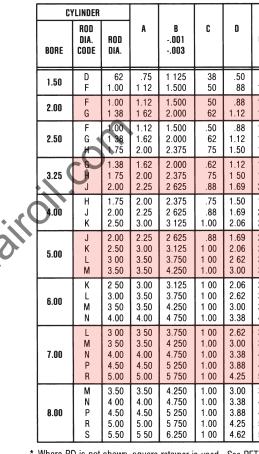
INTERMEDIATE MALE THREAD



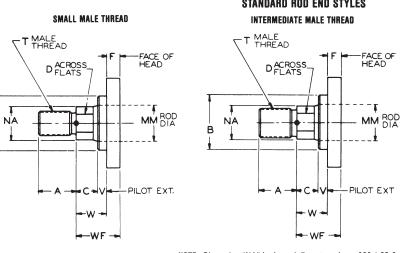


SHORT FEMALE THREAD -T FEMALE -FACE OF HEAD DELATS NA PILOT FXT • C + W-

WF-


These Dimensions are Constant Regardless of Rod Diameter

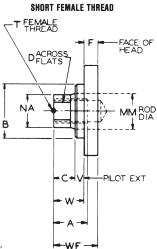
	E	EE		F	FB	G	J	K	LB	р	B	TF	UF
BORE		SAE Straight thread	NPTF**								±.010	±.010	
1.50	2 50	#8(750-16)	1/2	38	438	1 75	1 50	31	5 00	2 88	1.63	3 43	4 25
2.00	3 00	#8(750-16)	1/2	62	.562	1 75	1 50	.44	5.25	2 88	2 05	4 12	5.12
2.50	3 50	#8(750-16)	1/2	62	.562	1.75	1.50	.44	5 38	3.00	2.55	4 62	5 62
3.25	4 50	#12 (1.062-12)	3/4	75	.687	2.00	1 75	.56	6 25	3 50	3 25	5 88	7.12
4.00	5 00	#12 (1 062-12)	3/4	.88	687	2.00	1 75	56	6 62	3.75	3 82	6.38	7.62
5.00	6 50	#12 (1 062-12)	3/4	.88	.938	2.00	1.75	.75	7 12	4 25	4 95	8 19	9.75
6.00	7 50	#16 (1 312-12)	1	1 00	1 062	2.25	2 25	88	8.38*	4.88	5.73	9.44	11 25
7.00	8 50	#20 (1 625-12)	1 ¼	1 00	1 187	2 75	2 75	1 00	9 50	5 38	6.58	10 62	12.62
8.00	9 50	#24 (1 875-12)	1 ½	1 00	1 312	3 00	3 00	1 06	10 50	6 12	7 50	11 81	14.00


* With (K) Rod F = .88, LB = 8.25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

CAUTION: This mounting style has reduced pressure ratings depending on application mode. For pressures which exceed those shown in the following page dimensional chart, HANNA recommends the use of ME6 mounting style, shown on page 22.

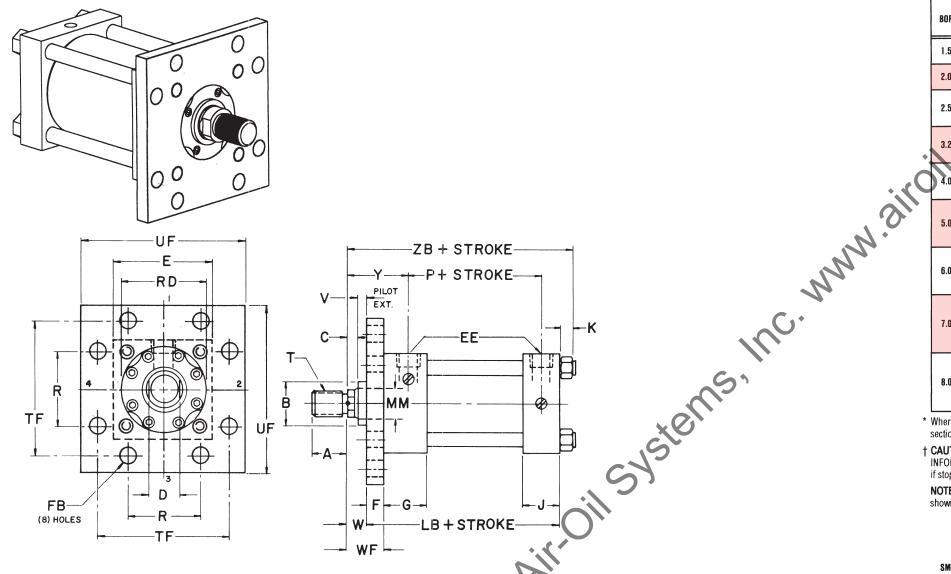
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods). minus .062 (1.38-5.50 rods)


Series 2H and 3L Hydraulic Cylinders

			T (THREAD)							
MM Rod Dia.	RD*	SMALL Male SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Y	ZF	ZJ	PSI Rating†
62 1.00	-	44-20 75-16	.50-20 .88-14	44-20 .75-16	25 .50	62 1 00	2 00 2.38	6 00 6.38	5 62 6.00	1650 1650
1.00 1.38	-	.75-16• 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 38	.75 1.00	2 38 2.62	6.62 6 88	6.00 6 25	2575 2575
1.00 1.38 1.75		.75-16 1.00-14 1 25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	.75 1.00 1.25	2.38 2.62 2.88	6.75 7.00 7 25	6.12 6.38 6.62	2060 2060 2060
1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1.12 1 25	2.75 3 00 3.12	7.88 8 12 8.25	7.12 7.38 7 50	1800 1800 1800
1 75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	25 25 .38	1.00 1.12 1.38	3.00 3.12 3 38	8.50 8.62 8.88	7 62 7.75 8.00	1650 1650 1650
2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1 75-12 2.25-12 2 75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 38 38 .38	1.12 1.38 1.38 1 38	3.12 3.38 3.38 3.38	9.12 9 38 9 38 9.38	8.25 8.50 8 50 8.50	1220 1220 1220 1220 1220
2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3 75-12	1.88-12 2.25-12 2.50-12 3.00-12	38 .25 .25 .25	1.38 1.25 1.25 1.25	3.50 3.50 3.50 3.50 3.50	10.62 10.62 10.62 10.62	9 62 9.62 9 62 9.62	1120 1120 1120 1120 1120
3.00 3 50 4.00 4.50 5.00	6.38 6.38 6.38 7.50 7 50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2 25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 25 .25 .25	1.25 1 25 1.25 1 25 1.25 1.25	3 81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	10.75 10.75 10.75 10.75 10.75 10.75	850 850 850 850 850
3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4 00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3 50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1 25 1.25 1.25 1.25 1.25	3.94 3.94 3.94 3.94 3.94 3.94	12.75 12.75 12.75 12.75 12.75 12.75	11.75 11.75 11.75 11.75 11.75 11.75	600 600 600 600 600

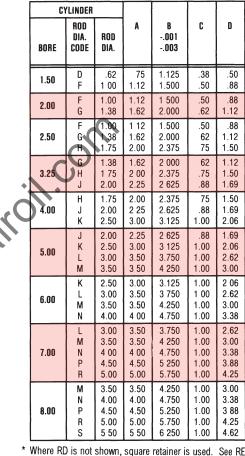
* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA


† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine

STANDARD ROD END STYLES

if stop tube is required.

SERIES 2H 1.50"-8.00" Bores MF5 Head Square Flange Mount


These Dimensions are Constant Regardless of Rod Diameter

	E	EE			FB	G	J	K	LB	P	R	TF	UF
BORE		SAE Straight thread	NPTF**								±.010	±.010	
1.50	2 50	#8 (.750-16)	1/2	38	438	1 75	1 50	31	5 00	2.88	1.63	3.43	4.25
2.00	3.00	#8 (.750-16)	1/2	62	562	1 75	1 50	.44	5.25	2.88	2.05	4.12	5.12
2.50	3.50	#8 (750-16)	1/2	62	.562	1.75	1 50	.44	5.38	3.00	2.55	4.62	5.62
3.25	4.50	#12 (1 062-12)	3/4	75	687	2.00	1 75	.56	6.25	3.50	3.25	5.88	7.12
4.00	5 00	#12 (1 062-12)	3/4	88	687	2.00	1 75	.56	6.62	3 75	3.82	6.38	7.62
5.00	6.50	#12 (1 062-12)	3/4	88	938	2.00	1 75	.75	7.12	4.25	4.95	8.19	9.75
6.00	7 50	#16 (1 312-12)	1	1 00	1.062	2 25	2.25	.88	8 38	4.88	5.73	9.44	11.25
7.00	8.50	#20 (1 625-12)	1 1/4	1 00	1.187	2 75	2.75	1.00	9 50	5.38	6 58	10 62	12.62
8.00	9.50	#24 (1 875-12)	1 1/2	1 00	1 312	3 00	3 00	1.06	10 50	6 12	7 50	11.81	14.00

** NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

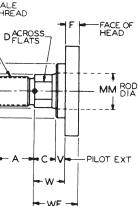
CAUTION: This mounting style has reduced pressure ratings depending on application mode. For pressures which exceed those shown in the following page dimensional chart, HANNA recommends the use of ME5 mounting style, shown on page 20.

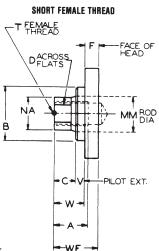
Dimensions are Affected by the Rod Diameter

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

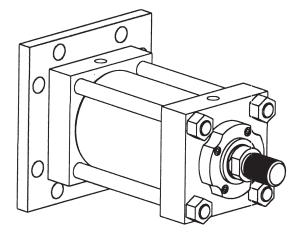
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

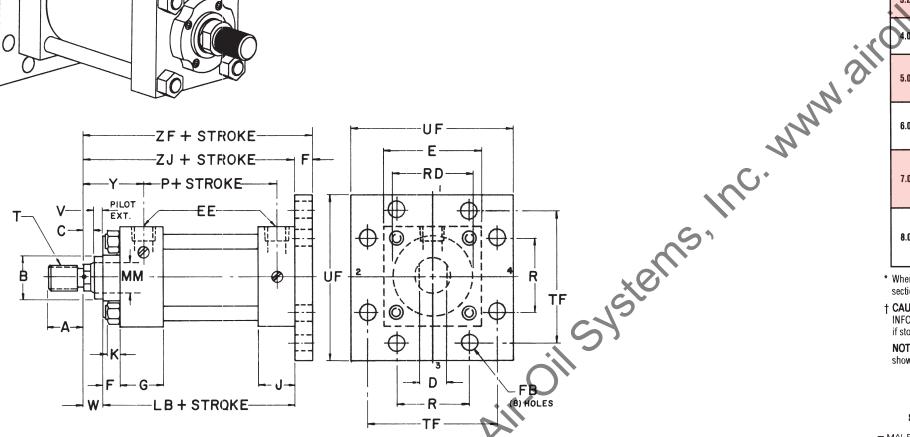
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.


STANDARD ROD END STYLES SMALL MALE THREAD INTERMEDIATE MALE THREAD - T MALE THREAD T MALE -FACE OF D ACROSS DACROSS MM ROD NA PILOT EXT. < C → \ ⊷W -• ⊢W⊣ -WF -WF

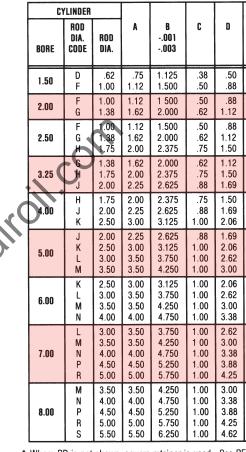

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

R


Series 2H and 3L Hydraulic Cylinders


			T (THREAD)							
MM Rod Dia.	RD	SMALL Male SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	WF	Ŷ	ZB	PSI Rating†
.62 1 00	-	.44-20 75-16	50-20 .88-14	.44-20 .75-16	25 50	.62 1.00	1.00 1.38	2.00 2.38	5.94 6.31	2900 2500
1.00 1 38	-	.75-16 1 00-14	.88-14 1.25-12	.75-16 1.00-14	25 .38	.75 1.00	1.38 1.62	2.38 2.62	6.44 6.69	3000 3000
1.00 1.38 1.75	- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1 50-12	75-16 1.00-14 1.25-12	.25 .38 50	.75 1.00 1.25	1.38 1.62 1.88	2.38 2.62 2.88	6.56 6.81 7 06	3000 3000 2675
1 38 1.75 2.00		1 00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	25 .38 .38	88 1.12 1.25	1.62 1.88 2.00	2.75 3.00 3.12	7.69 7.94 8.06	2825 2625 2500
1 75 2.00 2.50		1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 25 .38	1 00 1 12 1.38	1 88 2.00 2.25	3.00 3 12 3.38	8.19 8.31 8 56	2650 2550 2300
2.00 2.50 3.00 3.50	- - 5 62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 38	1.12 1.38 1.38 1.38	2.00 2.25 2.25 2.25 2.25	3.12 3 38 3.38 3.38	9.00 9.25 9.25 9.25	1825 1700 1050 1050
2.50 3.00 3.50 4.00	- 6 38 6.38 6 38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.25 25 25 .25	1 25 1.25 1.25 1 25	2.25 2.25 2.25 2.25 2.25	3.50 3.50 3 50 3.50	10.50 10.50 10.50 10.50	1650 1000 1000 1000
3.00 3.50 4.00 4.50 5.00	6.38 6.38 6 38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2 50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	2.25 2.25 2.25 2.25 2.25 2.25	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11 75 11.75 11.75 11.75 11.75	775 775 775 650 650
3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2 50-12 3.00-12 3.25-12 3.50-12 4.00-12	25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	2.25 2.25 2.25 2.25 2.25 2.25 2 25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	650 650 500 500 500

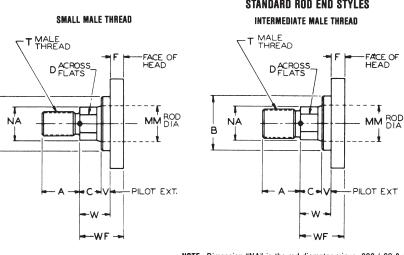
SERIES 2H 1.50"-8.00" Bores MF6 Cap Square Flange Mount


These Dimensions are Constant Regardless of Rod Diameter

	E	EE		F	FB	G	J	K	LB	Р	R	TF	UF
BORE		SAE Straight thread	NPTF**							-	±.010	±.010	
1.50	2 50	#8(750-16)	1/2	38	438	1 75	1 50	31	5.00	2 88	1.63	3.43	4.25
2.00	3 00	#8(750-16)	1/2	62	.562	1 75	1.50	.44	5.25	2.88	2.05	4.12	5.12
2.50	3.50	#8(750-16)	1/2	.62	562	1.75	1 50	44	5.38	3.00	2.55	4.62	5.62
3.25	4 50	#12 (1 062-12)	3/4	75	687	2.00	1 75	.56	6 25	3.50	3 25	5.88	7.12
4.00	5.00	#12 (1 062-12)	3/4	.88	.687	2 00	1.75	56	6 62	3 75	3.82	6.38	7.62
5.00	6 50	#12 (1 062-12)	3/4	88	938	2.00	1 75	75	7.12	4 25	4.95	8 19	9 75
6.00	7 50	#16 (1 312-12)	1	1 00*	1.062	2 25	2 25	88	8 38*	4.88	5.73	9.44	11.25
7.00	8 50	#20 (1.625-12)	1 ¼	1.00	1.187	2.75	2.75	1 00	9.50	5 38	6 58	10 62	12.62
8.00	9 50	#24 (1 875-12)	1 ½	1 00	1.312	3 00	3 00	1 06	10.50	6 12	7 50	11 81	14.00

*With (K) Rod F = 88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

CAUTION: This mounting style has reduced pressure ratings depending on application mode. For pressures which exceed those shown in the following page dimensional chart, HANNA recommends the use of ME6 mounting style, shown on page 22.


Dimensions are Affected by the Rod Diameter

section.

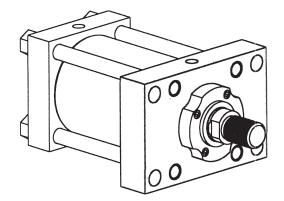
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

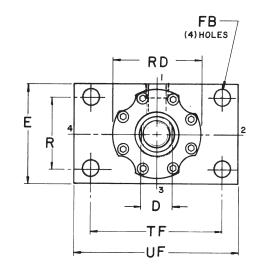
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

Series 2H and 3L Hydraulic Cylinders

								-		
			T (THREAD)							
MM ROD DIA.	RD*	SMALL Male SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	Y	ZJ	ZF	PSI Rating†
.62		.44-20	.50-20	.44-20	.25	.62	2.00	5.62	6.00	3000
1.00		.75-16	.88-14	.75-16	.50	1.00	2.38	6.00	6.38	3000
1.00	-	.75-16	.88-14	.75-16	.25	.75	2.38	6.00	6.62	3000
1.38		1.00-14	1.25-12	1.00-14	.38	1.00	2.62	6.25	6.88	3000
1.00	-	.75-16	.88-14	.75-16	.25	.75	2.38	6.12	6.75	3000
1.38	-	1.00-14	1.25-12	1.00-14	.38	1.00	2.62	6.38	7.00	3000
1.75	-	1.25-12	1.50-12	1.25-12	.50	1.25	2.88	6.62	7.25	3000
1.38	3.50	1.00-14	1.25-12	1.00-14	.25	.88	2.75	7.12	7.88	3000
1.75	3.50	1.25-12	1.50-12	1.25-12	.38	1.12	3.00	7.38	8.12	3000
2.00	3.88	1.50-12	1.75-12	1.50-12	.38	1.25	3.12	7.50	8.25	3000
1.75	3.50	1.25-12	1.50-12	1.25-12	.25	1.00	3.00	7.62	8.50	3000
2.00	4.25	1.50-12	1.75-12	1.50-12	.25	1.12	3.12	7.75	8.62	3000
2.50	4.25	1.88-12	2.25-12	1.88-12	.38	1.38	3.38	8.00	8.88	3000
2.00	4.25	1.50-12	1.75-12	1.50-12	.25	1.12	3.12	8.25	9.12	2450
2.50	4.25	1.88-12	2.25-12	1.88-12	.38	1.38	3.38	8.50	9.38	2450
3.00	5.62	2.25-12	2.75-12	2.25-12	.38	1.38	3.38	8.50	9.38	2450
3.50	5.62	2.50-12	3.25-12	2.50-12	.38	1.38	3.38	8.50	9.38	2450
2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1.25 1.25 1.25	3.50 3.50 3.50 3.50	9.62 9.62 9.62 9.62	10.62 10.62 10.62 10.62	1925 1925 1925 1925 1925
3.00 3.50 4.00 4.50 5.00	6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.81 3.81 3.81 3.81 3.81 3.81	10.75 10.75 10.75 10.75 10.75 10.75	11.75 11.75 11.75 11.75 11.75 11.75	1475 1475 1475 1475 1475 1475
3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.94 3.94 3.94 3.94 3.94 3.94	11.75 11.75 11.75 11.75 11.75 11.75	12.75 12.75 12.75 12.75 12.75 12.75	1200 1200 1200 1200 1200 1200


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA


STANDARD ROD END STYLES

SHORT FEMALE THREAD THREAD FACE OF DACROS NA MM ROD PILOT EXT. w · A ---WF

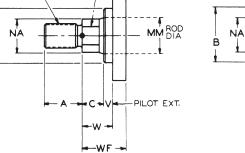
SERIES 2H 1.50"-8.00" Bores **ME5 Head Flange Mount**

(For 10.00" - 14.00" Bores, see Page 38)

These Dimensions are Constant Regardless of Rod Diameter

	E	EE		F	FB	G		K	LB	Р	R	TF	UF
BORE		SAE Straight thread	NPTF**					Ň			±.010	±.010	01
1.50	2.50	#8(750-16)	1/2	38	.438	1.75	1.50	.31	5.00	2 88	1.63	3.43	4.25
2.00	3 00	#8(.750-16)	1/2	.62	562	1 75	1 50	.44	5 25	2 88	2 05	4.12	5 12
2.50	3 50	#8(750-16)	1/2	.62	.562	1.75	1.50	.44	5.38	3.00	2.55	4.62	5.62
3.25	4.50	#12 (1.062-12)	3/4	75	687	2.00	1 75	.56	6.25	3 50	3.25	5.88	7.12
4.00	5 00	#12 (1.062-12)	3/4	88	687	2 00	1 75	56	6.62	3 75	3.82	6.38	7.62
5.00	6.50	#12 (1 062-12)	3/4	88	938	2.00	1 75	75	7 12	4.25	4 95	8 19	9.75
6.00	7.50	#16 (1.312-12)	1	1.00*	1 062	2.25	2 25	.88	8.38*	4 88	5.73	9 44	11.25
7.00	8 50	#20 (1 625-12)	1 ¼	1 00	1.187	2 75	2.75	1.00	9 50	5 38	6.58	10.62	12.62
8.00	9.50	#24 (1.875-12)	1 ½	1.00	1.312	3 00	3 00	1 06	10.50	6.12	7 50	11.81	14.00

* With (K) Rod F = 88, LB = 8.25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

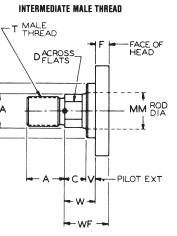

Dimensions are Affected by the Rod Diameter

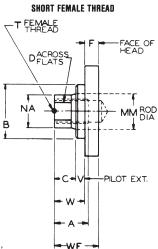
	CY	LINDER									T (THREAD)							
	BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Rod Dia.	RD	SMALL Male SM	INTER- MEDIATE MALE IM	SHORT Female SF	V	W	WF	Ŷ	ZB	PSI Rating†
	1.50	D F	.62 1 00	75 1 12	1 125 1.500	.38 .50	50 88	62 1.00	2.00 2.38	.44-20 75-16	50-20 .88-14	.44-20 .75-16	25 .50	.62 1.00	1.00 1.38	2 00 2.38	5.94 6.31	3000 3000
	2.00	F G	1.00 1.38	1 12 1.62	1.500 2 000	50 62	.88 1.12	1.00 1.38	2.38 2.88	.75-16 1 00-14	.88-14 1.25-12	75-16 1.00-14	25 .38	75 1.00	1.38 1 62	2.38 2.62	6.44 6.69	3000 3000
	2.50	FGF	1 00 1.38 1 75	1.12 1.62 2 00	1 500 2.000 2.375	.50 62 75	.88 1.12 1.50	1.00 1.38 1.75	2.38 3 25 3.25	75-16 1 00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	25 .38 .50	.75 1.00 1.25	1 38 1 62 1.88	2.38 2.62 2.88	6.56 6.81 7.06	3000 3000 3000
•	3.25	с т о	1.38 1.75 2.00	1 62 2.00 2.25	2.000 2 375 2.625	.62 .75 .88	1.12 1.50 1.69	1.38 1.75 2.00	3 50 3.50 3 88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1 25-12 1.50-12	.25 .38 38	.88 1.12 1.25	1.62 1.88 2.00	2.75 3.00 3.12	7.69 7.94 8.06	3000 3000 3000
	4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	2.375 2 625 3 125	75 .88 1.00	1.50 1.69 2.06	1.75 2.00 2.50	3.50 4.25 4.25	1 25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1 50-12 1.88-12	25 25 38	1 00 1.12 1 38	1.88 2.00 2.25	3.00 3.12 3.38	8.19 8.31 8.56	3000 3000 3000
	5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3 00 3.50 3 50	2 625 3.125 3.750 4.250	.88 1.00 1.00 1.00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4 25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3 25-12	1.50-12 1 88-12 2.25-12 2 50-12	25 .38 38 .38	1 12 1.38 1.38 1.38	2.00 2.25 2 25 2 25 2 25	3 12 3.38 3.38 3.38 3.38	9.00 9.25 9 25 9.25	3000 3000 3000 3000
	6.00	K L M N	2 50 3.00 3.50 4.00	3 00 3 50 3.50 4.00	3.125 3 750 4 250 4 750	1 00 1.00 1.00 1.00	2 06 2.62 3.00 3.38	2.50 3.00 3 50 4 00	4.25 6 38 6 38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	38 .25 25 .25	1.38 1.25 1.25 1.25	2 25 2 25 2.25 2.25 2.25	3.50 3 50 3.50 3.50 3.50	10.50 10.50 10.50 10.50	3000 3000 3000 3000
	7.00	L M N P R	3.00 3.50 4.00 4.50 5.00	3 50 3.50 4.00 4.50 5.00	3.750 4.250 4 750 5 250 5.750	1.00 1.00 1.00 1.00 1.00 1 00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4.50 5.00	6.38 6 38 6.38 7 50 7.50	2.25-12 2 50-12 3 00-12 3.25-12 3.50-12	2.75-12 3 25-12 3.75-12 4.25-12 4.75-12	2 25-12 2.50-12 3.00-12 3.25-12 3 50-12	25 .25 .25 .25 25	1 25 1.25 1.25 1.25 1.25 1.25	2.25 2.25 2 25 2 25 2.25 2.25	3 81 3.81 3 81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	3000 3000 3000 3000 3000
	8.00	M N R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5 00 5 50	4.250 4 750 5.250 5.750 6.250	1.00 1.00 1.00 1.00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5 50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3 50-12 4.00-12	25 .25 25 25 .25	1.25 1.25 1.25 1.25 1.25 1.25	2.25 2 25 2.25 2.25 2.25 2 25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	3000 3000 3000 3000 3000

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

FACE OF

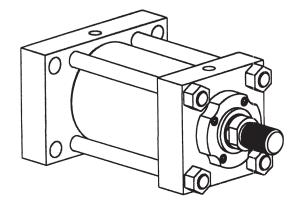


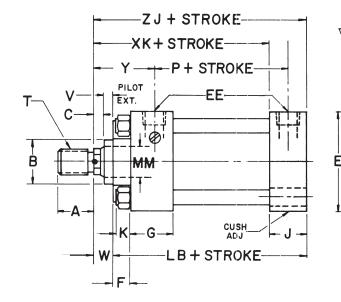

SMALL MALE THREAD

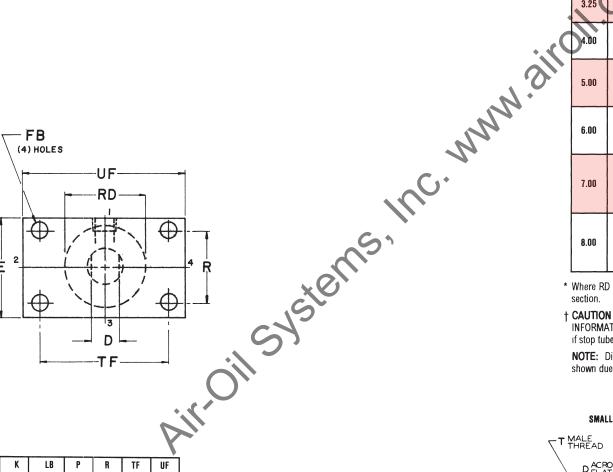
D ACROSS

Series 2H and 3L Hydraulic Cylinders

STANDARD ROD END STYLES






NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

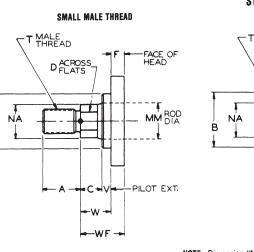
SERIES 2H 1.50"-8.00" Bores **ME6 Cap Flange Mount**

(For 10.00" - 14.00" Bores, see Page 38)

These Dimensions are Constant Regardless of Rod Diameter

	E	EE		F	FB	6	J	K	LB	Р	R	TF	UF
BORE		SAE Straight thread	NPTF**							•	±.010	±.010	0.
1.50	2.50	#8(750-16)	1/2	.38	.438	1 75	1 50	.31	5.00	2.88	1.63	3.43	4.25
2.00	3 00	#8(750-16)	1/2	62	.562	1.75	1 50	.44	5.25	2.88	2.05	4.12	5.12
2.50	3.50	#8(750-16)	1/2	62	.562	1.75	1 50	.44	5.38	3.00	2.55	4.62	5.62
3.25	4.50	#12 (1.062-12)	3/4	.75	.687	2.00	1 75	.56	6.25	3.50	3 25	5.88	7.12
4.00	5 00	#12 (1 062-12)	3/4	.88	687	2 00	1 75	56	6.62	3.75	3.82	6.38	7.62
5.00	6 50	#12 (1 062-12)	3/4	88	938	2 00	1 75	.75	7.12	4.25	4.95	8 19	9 75
6.00	7 50	#16 (1 312-12)	1	1 ()0*	1 062	2.25	2.25	.88	8.38*	4.88	5.73	9.44	11.25
7.00	8 50	#20 (1 625-12)	1 ¼	1.()0	1 187	2.75	2 75	1.00	9 50	5.38	6.58	10.62	12.62
8.00	9.50	#24 (1 875-12)	1 ½	1.()0	1 312	3 00	3 00	1.06	10.50	6.12	7.50	11.81	14 00

* With (K) Rod F = .88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

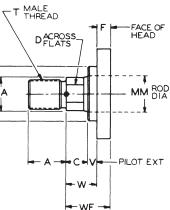

Dimensions are Affected by the Rod Diameter

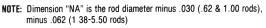
C	LINDER									T (THREAD)							
BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Rod Dia.	RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	Y	ХК	ZJ	PSI Rating†
1.50	D F	62 1 00	75 1 12	1 125 1 500	38 .50	.50 .88	62 1.00	-	44-20 .75-16	.50-20 .88-14	44-20 75-16	25 50	62 1 00	2.00 2.38	4 12 4 50	5.62 6.00	3000 3000
2.00	F G	1 00 1.38	1.12 1 62	1 500 2 000	.50 62	.88 1.12	1.00 1 38	-	.75-16 1.00-14	.88-14 1.25-12	75-16 1.00-14	.25 38	.75 1 00	2.38 2.62	4.50 4.75	6.00 6 25	3000 3000
2.50	F G H	1.00 1.38 1.75	1 12 1.62 2.00	1 500 2 000 2 375	.50 .62 75	.88 1.12 1.50	1.00 1.38 1 75	-	.75-16 1.00-14 1 25-12	88-14 1.25-12 1 50-12	75-16 1.00-14 1.25-12	.25 38 .50	75 1 00 1 25	2 38 2 62 2 88	4.62 4.88 5.12	6.12 6 38 6 62	3000 3000 3000
3.25	ر لے م	1.38 1.75 2.00	1.62 2 00 2.25	2.000 2.375 2 625	62 75 88	1.12 1.50 1 69	1 38 1.75 2 00	3 50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1 75-12	1.00-14 1 25-12 1.50-12	.25 .38 .38	.88 1.12 1 25	2.75 3.00 3 12	5.38 5.62 5.75	7.12 7.38 7.50	3000 3000 3000
4.00	H J K	1.75 2.00 2 50	2 00 2 25 3.00	2 375 2 625 3 125	75 .88 1.00	1 50 1 69 2 06	1 75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 25 .38	1 00 1 12 1.38	3.00 3.12 3.38	5.88 6.00 6.25	7.62 7.75 8.00	3000 3000 3000
5.00	J K L M	2.00 2 50 3 00 3.50	2 25 3.00 3.50 3 50	2 625 3 125 3 750 4 250	88 1.00 1.00 1 00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4 25 4.25 5.62 5 62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2 25-12 2.75-12 3 25-12	1.50-12 1.88-12 2.25-12 2.50-12	25 38 .38 38	1.12 1 38 1.38 1 38	3 12 3.38 3.38 3.38 3.38	6 50 6 75 6 75 6 75 6 75	8.25 8.50 8.50 8.50	3000 3000 3000 3000
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4 00	3.125 3 750 4.250 4 750	1 00 1.00 1.00 1 00	2.06 2.62 3.00 3 38	2.50 3.00 3 50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3 00-12	2.25-12 2.75-12 3.25-12 3.75-12	1 88-12 2.25-12 2.50-12 3.00-12	38 25 25 .25	1.38 1 25 1.25 1.25	3.50 3.50 3.50 3.50 3 50	7.38 7 38 7 38 7.38 7.38	9 62 9 62 9.62 9.62	3000 3000 3000 3000
7.00	L M P R	3.00 3.50 4 00 4 50 5.00	3.50 3.50 4 00 4.50 5.00	3.750 4.250 4 750 5 250 5.750	1.00 1.00 1.00 1.00 1.00	2.62 3.00 3.38 3.88 4.25	3 00 3 50 4.00 4 50 5 00	6.38 6 38 6.38 7.50 7 50	2.25-12 2.50-12 3 00-12 3.25-12 3 50-12	2.75-12 3.25-12 3 75-12 4.25-12 4 75-12	2 25-12 2 50-12 3.00-12 3 25-12 3 50-12	.25 25 25 .25 25 25	1 25 1 25 1.25 1.25 1.25 1 25	3.81 3.81 3.81 3.81 3.81 3.81	8.00 8.00 8.00 8.00 8.00 8.00	10.75 10.75 10.75 10.75 10.75 10.75	3000 3000 3000 3000 3000
8.00	M N P R S	3.50 4.00 4.50 5 00 5 50	3.50 4.00 4 50 5.00 5.50	4.250 4.750 5.250 5.750 6.250	1 00 1.00 1.00 1 00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5 50	6 38 6 38 8.00 8 00 8 00	2 50-12 3.00-12 3.25-12 3 50-12 4 00-12	3.25-12 3 75-12 4.25-12 4 75-12 5 25-12	2 50-12 3 00-12 3 25-12 3 50-12 4 00-12	25 25 .25 25 25	1 25 1 25 1.25 1.25 1.25 1 25	3.94 3.94 3.94 3.94 3.94 3.94		11.75 11.75 11 75 11.75 11.75 11.75	3000 3000 3000 3000 3000

* Where RD is not shown, square retainer Is used. See RETAINER PLATE CONSTRUCTION IN INSTALLATION, OPERATION AND MAINTENANCE DATA

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine If stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

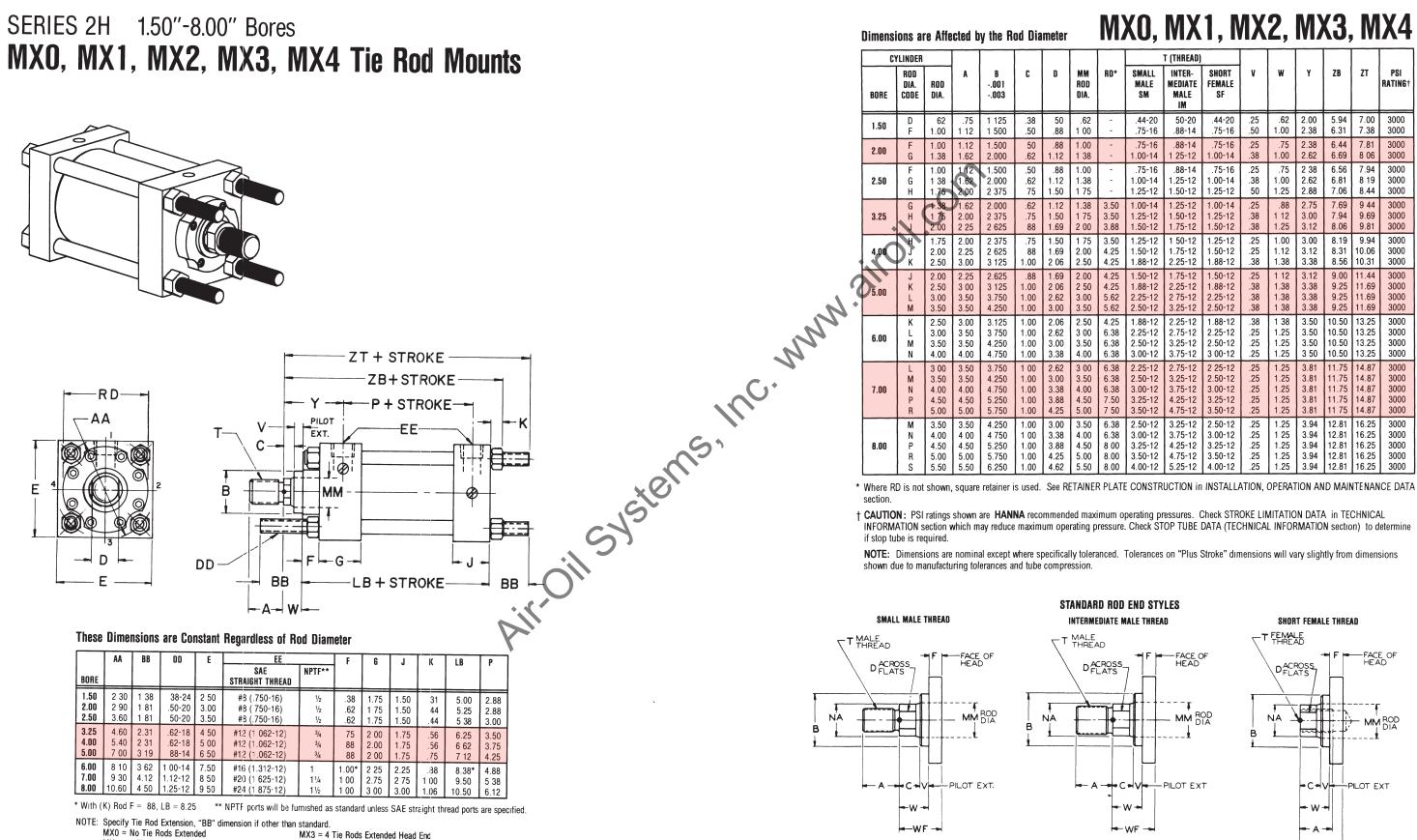



в

Series 2H and 3L Hydraulic Cylinders

STANDARD ROD END STYLES

INTERMEDIATE MALE THREAD



SHORT FEMALE THREAD T FEMALE -FACE OF HEAD DACRO NA PILOT EXT C+V • W -

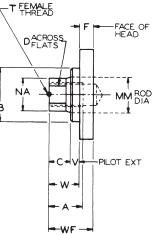
- A --

-WF

MX0 = No Tie Rods Extended

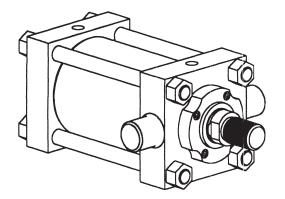
MX1 = 4 Tie Rods Extended Both Ends MX2 = 4 Tie Rods Extended Cap End

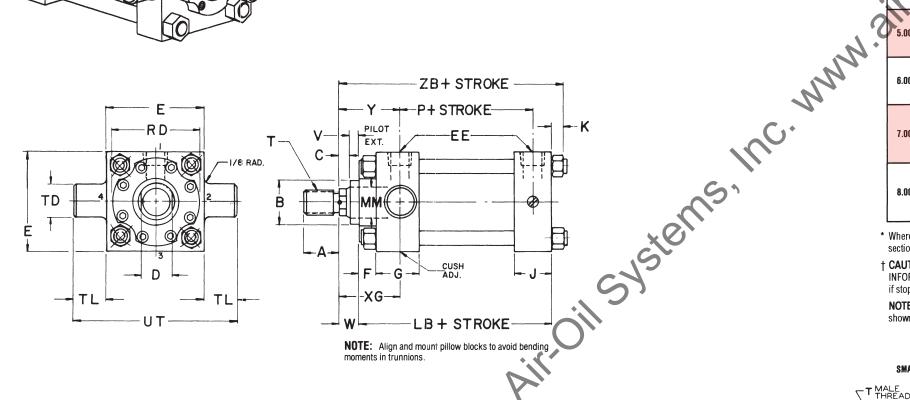
MX4 = 2 Tie Rods Extended Both Ends


24

Series 2H and 3L Hydraulic Cylinders

MX0, MX1, MX2, MX3, MX4


		T (THREAD)							
10*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Y	ZB	ZT	PSI Rating†
- -	.44-20 .75-16	50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	2.00 2.38	5.94 6.31	7.00 7.38	3000 3000
-	.75-16 1.00-14	.88-14 1 25-12	.75-16 1.00-14	.25 .38	.75 1.00	2.38 2.62	6.44 6.69	7.81 8 06	3000 3000
- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 50	.75 1.00 1.25	2 38 2.62 2.88	6.56 6.81 7.06	7.94 8 19 8.44	3000 3000 3000
.50 .50 .88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1 12 1.25	2.75 3.00 3.12	7.69 7.94 8.06	9 44 9.69 9.81	3000 3000 3000
.50 .25 .25	1.25-12 1.50-12 1.88-12	1 50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	3.00 3.12 3.38	8.19 8.31 8.56	9.94 10.06 10.31	3000 3000 3000
.25 .25 .62 .62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2 75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1 12 1.38 1.38 1 38	3.12 3.38 3.38 3.38 3.38	9.00 9.25 9.25 9.25	11.44 11.69 11.69 11.69	3000 3000 3000 3000
.25 .38 .38 .38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3 00-12	.38 .25 .25 .25	1 38 1.25 1.25 1.25	3.50 3.50 3.50 3.50 3 50	10.50 10.50 10.50 10.50	13.25 13.25 13.25 13.25 13.25	3000 3000 3000 3000
i.38 i.38 i.38 i.50 i.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2 25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11 75	14.87 14.87 14.87 14.87 14.87 14.87	3000 3000 3000 3000 3000
5.38 5.38 1 00 5.00 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1 25 1.25 1.25 1.25 1.25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	16.25 16.25 16.25 16.25 16.25 16.25	3000 3000 3000 3000 3000 3000


NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

SERIES 2H 1.50"-8.00" Bores **MT1 Head Trunnion Mount**

(For 10.00" - 14.00" Bores, see Page 38)

These Dimensions are Constant Regardless of Rod Diameter

	E	EE	F	6	J	K	LB	Р	TD	TL	UT	
BORE		SAE Straight thread	NPTF**							+.000 002		
1.50	2 50	#8(750-16)	1/2	.38	1.75	1.50	.31	5 00	2.88	1.000	1.00	4 50
2.00	3.00	#8(750-16)	1/2	.62	1.75	1.50	.44	5.25	2.88	1.375	1.38	5 75
2.50	3.50	#8(750-16)	1/2	62	1 75	1.50	.44	5.38	3.00	1.375	1.38	6.25
3.25	4.50	#12 (1 062-12)	3/4	75	2 00	1 75	56	6 25	3 50	1.750	1.75	8 00
4.00	5.00	#12 (1.062-12)	3/4	88	2 00	1 75	56	6.62	3.75	1.750	1.75	8.50
5.00	6.50	#12 (1 062-12)	3/4	.88	2 00	1 75	75	7 12	4.25	1.750	1.75	10 00
6.00	7.50	#16 (1 312-12)	1	1.00*	2 25	2.25	.88	8.38*	4 88	2 000	2.00	11.50
7.00	8 50	#20 (1 625-12)	1 ¼	1.00	2.75	2.75	1 00	9.50	5.38	2 500	2 50	13 50
8.00	9 50	#24 (1 875-12)	1 ½	1.00	3 00	3 00	1 06	10 50	6 12	3 000	3 00	15.50

* With (K) Rod F = 88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

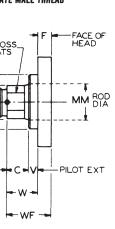
C	LINDER									T (THREAD)							
BORE	ROD DIA. Code	ROD DIA.	A	B 001 003	C	D	MM Rod Dia.	RD*	SMALL Male Sm	INTER- MEDIATE Male Im	SHORT Female Sf	V	w	XG	Y	ZB	PSI Rating†
1.50	D F	.62 1.00	.75 1.12	1.125 1.500	.38 .50	.50 .88	.62 1.00	-	.44-20 .75-16	.50-20 .88-14	44-20 .75-16	.25 .50	.62 1.00	1.88 2.25	2.00 2.25	5.94 6.31	3000 3000
2.00	F G	1.00 1.38	1.12 1 62	1 500 2.000	.50 .62	.88 1.12	1.00 1.38	-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 .38	.75 1.00	2.25 2.50	2.38 2.62	6.44 6.69	3000 3000
2.50	F G H	1.00 1.38 1.75	1.12 1.62 2.00	1.500 2.000 2.375	.50 .62 .75	.88 1.12 1.50	1.00 1.38 1.75	- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	.75 1.00 1.25	2.25 2.50 2.75	2.38 2.62 2.88	6.56 6.81 7.06	3000 3000 3000
3.25	G Н Ј	1.38 1.75 2.00	1.62 2.00 2.25	2.000 2.375 2.625	.62 .75 .88	1.12 1.50 1.69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1.12 1.25	2.62 2.88 3.00	2.75 3.00 3.12	7.69 7.94 8.06	3000 3000 3000
4.00	н Н	1.75 2.00 2.50	2.00 2.25 3.00	2.375 2.625 3.125	.75 .88 1.00	1.50 1.69 2.06	1.75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	2.88 3.00 3.25	3.00 3.12 3.38	8.19 8.31 8.56	2150 2150 2150
5.00	JKLM	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	2.625 3.125 3.750 4.250	.88 1.00 1.00 1.00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	3.00 3.25 3.25 3.25 3.25	3.12 3.38 3.38 3.38 3.38	9.00 9.25 9.25 9.25	1365 1365 1365 1365
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	3 125 3.750 4.250 4.750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1 25 1.25 1.25	3.38 3.38 3.38 3.38 3.38	3.50 3.50 3.50 3.50 3.50	10.50 10.50 10.50 10.50	1250 1250 1250 1250 1250
7.00	L M N P R	3.00 3.50 4.00 4.50 5.00	3.50 3.50 4.00 4.50 5.00	3.750 4.250 4.750 5.250 5.750	1.00 1.00 1.00 1.00 1.00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4.50 5.00	6.38 6.38 6 38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.62 3.62 3.62 3.62 3.62 3.62	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	1425 1425 1425 1425 1425 1425
8.00	M N P R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5.00 5.50	4.250 4.750 5.250 5 750 6.250	1 00 1.00 1.00 1 00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.75 3.75 3.75 3.75 3.75 3.75 3.75	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	1575 1575 1575 1575 1575 1575

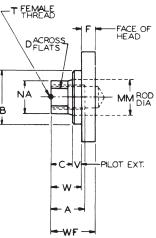
section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

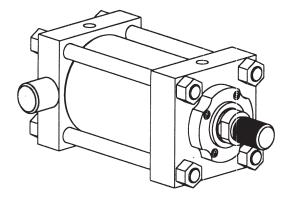
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

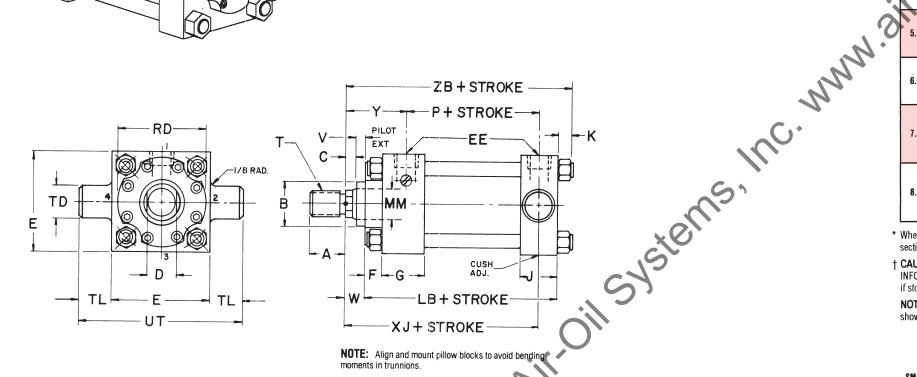
STANDARD ROD END STYLES SMALL MALE THREAD INTERMEDIATE MALE THREAD -FACE OF HEAD DACROSS D ACROSS MM ROD NA NA PILOT EXT. -w--wi NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus 062 (1 38-5.50 rods)


Series 2H and 3L Hydraulic Cylinders


Series 2H and 3L Hydraulic Cylinders

Series 2H and 3L Hydraulic Cylinders


MT1


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA

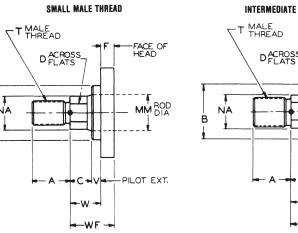
SERIES 2H 1.50"-8.00" Bores **MT2 Cap Trunnion Mount**

These Dimensions are Constant Regardless of Rod Diameter

	E	EE SAF NPTE**		F	G	IJ	K	LB	Р	TD	TL	UT
BORE		SAE Straight thread	NPTF**							+.000		
1.50	2 50	#8(750-16)	1/2	38	1 75	1 50	.31	5.00	2 88	1.000	1.00	4.50
2.00	3.00	#8(.750-16)	1/2	62	1 75	1 50	44	5 25	2.88	1.375	1.38	5.75
2.50	3.50	#8(.750-16)	1/2	62	1.75	1 50	.44	5.38	3.00	1 375	1.38	6.25
3.25	4.50	#12 (1 062-12)	3/4	.75	2.00	1 75	56	6.25	3.50	1.750	1.75	8.00
4.00	5.00	#12 (1.062-12)	3/4	88	2 00	1 75	.56	6.62	3.75	1.750	1.75	8.50
5.00	6 50	#12 (1.062-12)	3/4	.88	2 00	1.75	.75	7.12	4 25	1.750	1.75	10 00
6.00	7.50	#16 (1 312-12)	1	1 00*	2 25	2 25	.88	8.38*	4 88	2 000	2.00	11.50
7.00	8 50	#20 (1.625-12)	1 ¼	1 00	2 75	2 75	1.00	9.50	5 38	2 500	2 50	13 50
8.00	9 50	#24 (1.875-12)	1 ½	1 00	3 00	3.00	1.06	10.50	6 12	3.000	3.00	15 50

* With (K) Rod F = .88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

Dimensions are Affected by the Rod Diameter

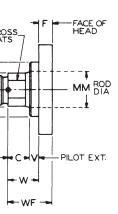

C)	LINDER									T (THREAD)							1
BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Rod DIA.	RD*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	ΧJ	Ŷ	ZB	PSI Rating†
1.50	D F	62 1.00	.75 1.12	1.125 1.500	.38 .50	.50 .88	.62 1.00	-	.44-20 75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	4.88 5.25	2.00 2.38	5.94 6.31	3000 3000
2.00	F G	1.00 1.38	1.12 1.62	1.500 2.000	.50 .62	.88 1.12	1.00 1.38	-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 .38	.75 1.00	5.25 5.50	2.38 2.62	6.44 6.69	3000 3000
2.50	F G H	1.00 1.38 1.75	1.12 1.62 2.00	1.500 2.000 2.375	.50 .62 .75	.88 1.12 1.50	1.00 1.38 1.75		.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	.75 1.00 1.25	5.38 5.62 5.88	2.38 2.62 2.88	6.56 6.81 7.06	3000 3000 3000
3.25	G H J	1 38).75 2.00	1.62 2.00 2.25	2.000 2.375 2.625	.62 .75 .88	1.12 1.50 1.69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1.12 1.25	6.25 6.50 6.62	2.75 3.00 3.12	7.69 7.94 8.06	3000 3000 3000
4,00	НJК	1.75 2.00 2.50	2.00 2.25 3.00	2.375 2.625 3.125	.75 .88 1.00	1.50 1.69 2.06	1.75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	6.75 6.88 7.12	3.00 3.12 3.38	8.19 8.31 8.56	2150 2150 2150
5.00	JKLM	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	2.625 3.125 3.750 4.250	88 1.00 1.00 1 00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	7.38 7.62 7.62 7.62	3.12 3.38 3.38 3.38 3.38	9.00 9.25 9.25 9.25	1365 1365 1365 1365
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	3.125 3.750 4.250 4.750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1.25 1 25 1.25	8.38 8.38 8.38 8.38	3.50 3.50 3.50 3.50	10.50 10.50 10.50 10.50	1250 1250 1250 1250
7.00	L M P R	3.00 3.50 4.00 4.50 5.00	3.50 3.50 4.00 4.50 5.00	3 750 4.250 4.750 5.250 5.750	1.00 1.00 1.00 1.00 1.00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4.50 5.00	6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	9.38 9.38 9.38 9.38 9.38 9.38	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	1425 1425 1425 1425 1425 1425
8.00	M N R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5.00 5.50	4.250 4.750 5.250 5.750 6.250	1.00 1.00 1.00 1.00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25	10.25 10.25 10.25 10.25 10.25 10.25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	1575 1575 1575 1575 1575 1575

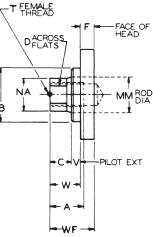
* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

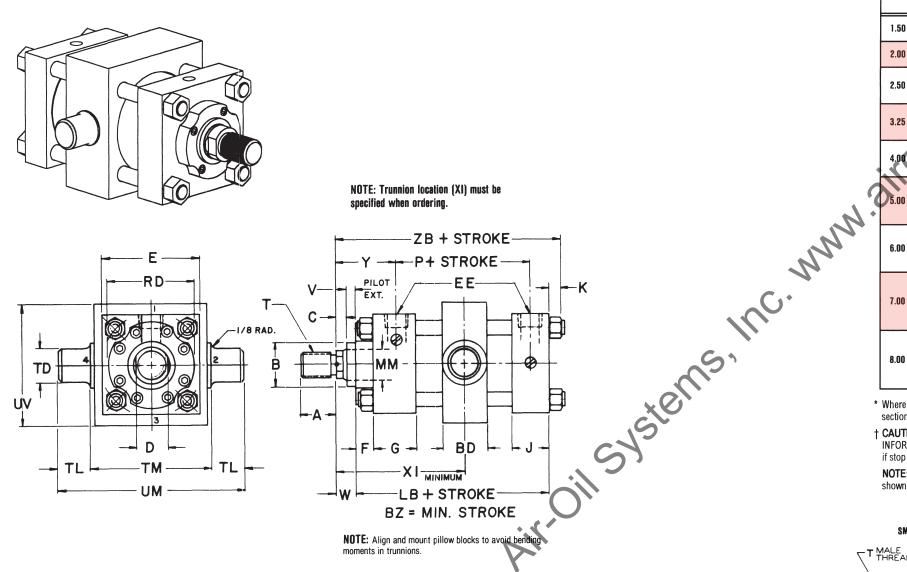
SIANUA




NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

Series 2H and 3L Hydraulic Cylinders

MT2

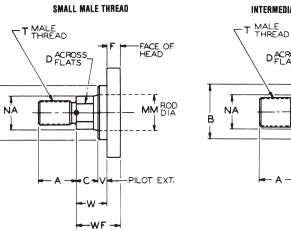


SERIES 2H 1.50"-8.00" Bores **MT4 Intermediate Fixed Trunnion Mount**

(For 10.00" - 14.00" Bores, see Page 38)

These Dimensions are Constant Regardless of Rod Diameter

	Т	BD	BZ	E	EE		F	G	J	K	LB	Р	TD	TL	TM	UM	uv
BO	RE				SAE Straight thread	NPTF**							+.000 002				
1.5		1 25	.25	2.50	#8 (.750-16)	1/2	.38	1.75	1 50	31	5.00	2.88	1 000	1.00	2.50	4.50	2.50
2.6		1.50	25	3 00	#8 (.750-16)	1/2	62	1 75	1.50	.44	5 25	2.88	1.375	1.38	3.38	6.12	3.38
2.5		1 75	.38	3.50	#8 (.750-16)	1/2	.62	1 75	1 50	44	5.38	3 00	1 375	1.38	4.25	7.00	4.25
3.1	00	2.50	88	4 50	#12 (1 062-12)	3/4	75	2.00	1 75	56	6.25	3 50	1 750	1.75	5.00	8.50	5.00
4.1		3.00	1 12	5 00	#12 (1 062-12)	3/4	88	2 00	1 75	56	6.62	3.75	1 750	1.75	6.25	8.75	6 25
5.1		3 50	1 12	6 50	#12 (1.062-12)	3/4	.88	2 00	1 75	75	7.12	4.25	1 750	1.75	7.75	11 25	7.75
6.0	00	4 00	1 25	7.50	#16 (1.312-12)	1	1.00*	2 25	2 25	.88	8 38*	4.88	2 000	2 00	9 25	13.25	9.25
7.0		4.50	1.62	8 50	#20 (1 625-12)	1¼	1 00	2.75	2 75	1 00	9 50	5 38	2 500	2.50	11 25	16.25	11 50
8.0		5 50	2 12	9.50	#24 (1 875-12)	1½	1 00	3.00	3 00	1 06	10.50	6 12	3 000	3.00	12.25	18 25	12.50

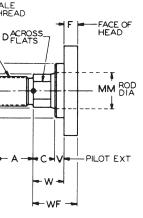

* With (K) Rod F = .88, LB = 8 25 ** NPTF ports will be furnished as standard unless SAE straight thread ports are specified

C	YLINDER									T (THREAD)							
BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM Rod Dia.	RD*	SMALL MALE SM	INTER- MEDIATE Male IM	SHORT Female SF	V	w	XI (MIN)	Y	ZB	PSI Rating [.]
1.50	D F	.62 1.00	.75 1.12	1.125 1.500	.38 .50	.50 .88	.62 1.00	-	.44-20 .75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	3.50 3.88	2.00 2.38	5.94 6.31	3000 3000
2.00	F G	1.00 1.38	1.12 1.62	1.500 2.000	.50 .62	.88 1.12	1.00 1.38	-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 .38	.75 1.00	4.00 4.25	2.38 2.62	6.44 6.69	3000 3000
2.50	F G H	1.00 1.38 1.75	1.12 1.62 2.00	1.500 2.000 2.375	.50 .62 .75	.88 1.12 1.50	1.00 1.38 1.75	- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	.75 1.00 1.25	4.12 4.38 4.62	2.38 2.62 2.88	6.56 6.81 7.06	3000 3000 3000
3.25	G H J	1.38 1.75 2.00	1.62 2.00 2.25	2.000 2.375 2.625	.62 .75 .88	1.12 1.50 1.69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1.12 1.25	5.00 5.25 5.38	2.75 3.00 3.12	7.69 7.94 8.06	3000 3000 3000
4.00	н Л К	1.75 2.00 2.50	2.00 2.25 3.00	2.375 2.625 3.125	.75 .88 1.00	1.50 1.69 2.06	1.75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	5.50 5.62 5.88	3.00 3.12 3.38	8.19 8.31 8.56	3000 3000 3000
5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	2.625 3.125 3.750 4.250	88 1.00 1.00 1.00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	5.88 6.12 6.12 6.12	3.12 3.38 3.38 3.38 3.38	9.00 9.25 9.25 9.25 9.25	1850 1850 1850 1850
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	3.125 3.750 4.250 4.750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1.25 1.25 1.25	6.62 6.62 6.62 6.62	3.50 3.50 3.50 3.50 3.50	10.50 10.50 10.50 10.50 10.50	1660 1660 1660 1660
7.00	L M P R	3.00 3.50 4.00 4.50 5.00	3.50 3.50 4.00 4.50 5.00	3.750 4.250 4.750 5.250 5.750	1.00 1.00 1.00 1.00 1.00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4.50 5.00	6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	7.38 7.38 7.38 7.38 7.38 7.38	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	1900 1900 1900 1900 1900
8.00	M N P R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5.00 5.50	4.250 4.750 5.250 5.750 6.250	1.00 1.00 1.00 1.00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	8.12 8.12 8.12 8.12 8.12 8.12	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	2100 2100 2100 2100 2100 2100

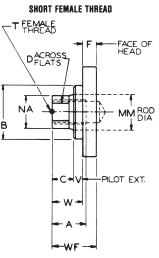
section

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

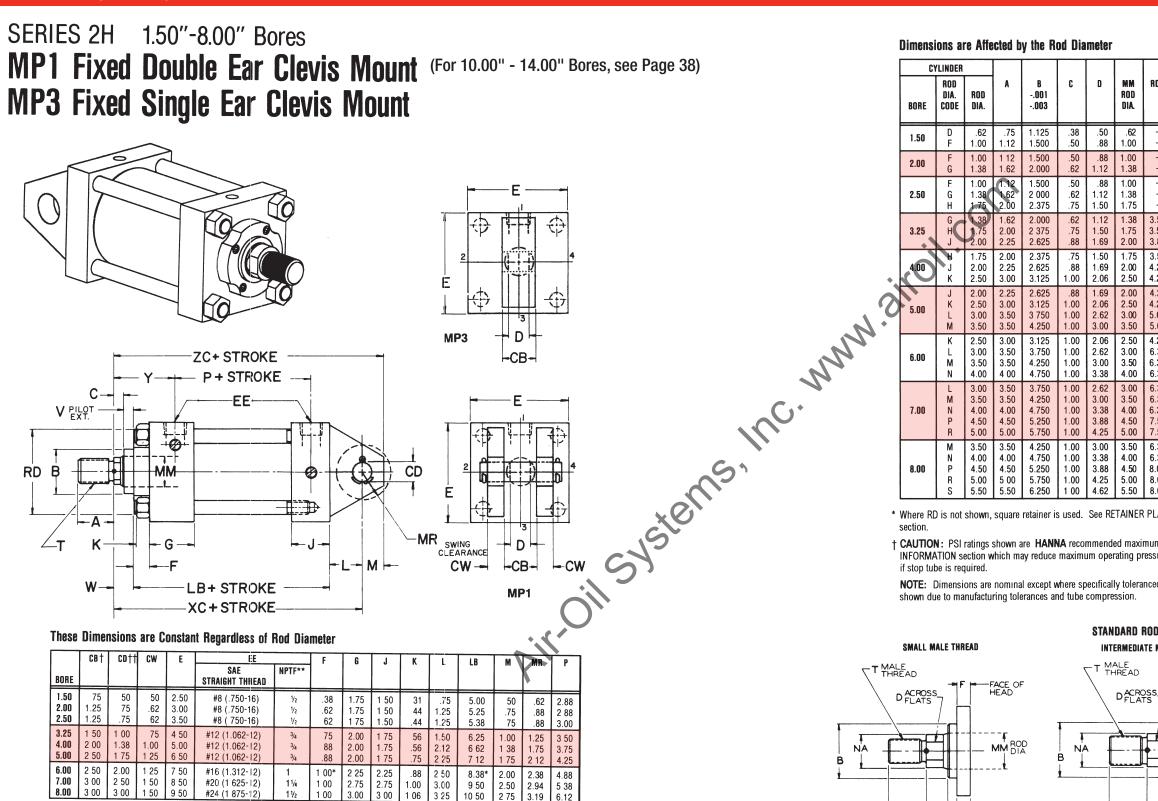
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.



minus .062 (1.38-5.50 rods)


Series 2H and 3L Hydraulic Cylinders

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

MT/

+CB tolerances are +.016, +.047 for MP1; and ±.005 for MP3 ++CD tolerances are +.003, +.005 for MP3

#24 (1 875-12)

• With (K) Rod F = .88, LB = 8 25 •• NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

3 00

1 06

3 25

0 50

NOTE: Some bore and rod combinations have reduced pressure ratings on the

tension stroke when used with a mounting bracket.

1 50 9 50

8.00 3 00 3 00

NOTE: Pivot pin supplied with MP1 cylinder; Pivot pin not supplied with MP3 cylinder.

minus .062 (1.38-5.50 rods)

-w-

-WF

PILOT EXT

Series 2H and 3L Hydraulic Cylinders

		T (THREAD)							
RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	XC	Y	ZC	PSI Rating†
-	.44-20 75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	6.38 6.75	2.00 2.38	6.88 7.25	3000 3000
-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 38	.75 1.00	7.25 7.50	2.38 2.62	8.00 8.25	3000 3000
- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 38 50	.75 1.00 1.25	7.38 7.62 7.88	2.38 2.62 2.88	8.12 8.38 8.62	3000 3000 3000
3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	25 .38 .38	.88 1.12 1.25	8.62 8.88 9.00	2.75 3.00 3.12	9.62 9.88 10.00	3000 3000 3000
3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	9.75 9.88 10.12	3.00 3.12 3.38	11.12 11.25 11.50	3000 3000 3000
4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	10.50 10.75 10.75 10.75	3.12 3.38 3.38 3.38 3.38	12.25 12.50 12.50 12.50	3000 3000 3000 3000
4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 25	1.38 1.25 1.25 1.25	12.12 12.12 12.12 12.12 12.12	3.50 3.50 3.50 3.50 3.50	14.12 14.12 14.12 14.12 14 12	3000 3000 3000 3000
6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	25 .25 .25 25 .25	1.25 1.25 1.25 1.25 1.25 1.25	13.75 13.75 13.75 13.75 13.75 13.75	3.81 3.81 3.81 3.81 3.81 3.81	16.25 16.25 16.25 16.25 16.25 16.25	3000 3000 3000 3000 3000 3000
6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	15.00 15.00 15.00 15.00 15.00	3.94 3.94 3.94 3.94 3.94 3.94	17 75 17.75 17.75 17.75 17.75 17 75	3000 3000 3000 3000 3000 3000

MP1 MP3

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions

MM

ROD DIA

.62 1.00

1.00

1.38

1.00

1.38

1.75

1 75

2.00

1.75 3

2.00

2.50

2.50

3.00

3.50

3.00

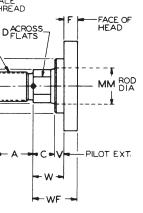
3.50

4.00 6

3.00

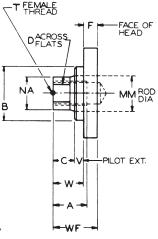
3.50

4.00

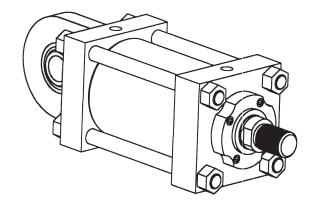

4.50

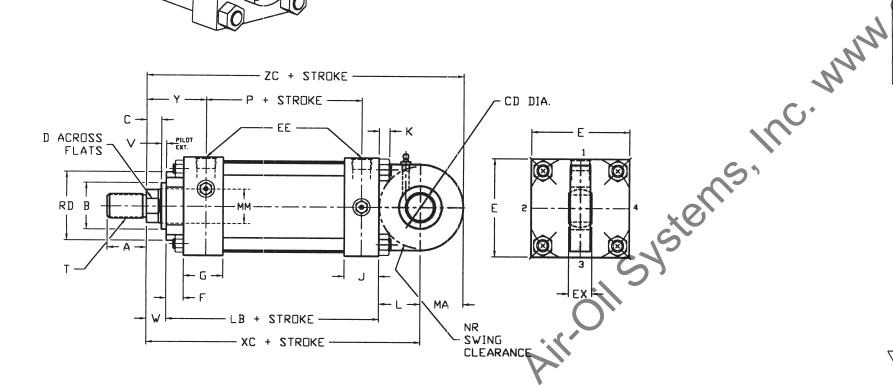
5.00

4.00 6


4.50

5.00 8.0

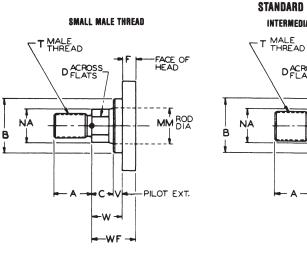



NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods)

SERIES 2H 1.50"-6.00" Bores MPU3 Spherical Bearing Mount

These Dimensions Are Constant Regardless of Rod Diameter

	CD	E	EE		EX	F	G	J	K	L	LB	MA	NR	P
BORE	-0.0005		SAE Straight Thread	NPTF**										
1.50 2.00 2.50	0.5000 0.7500 0.7500	2.50 3.00 3.50	#8 (.750-16) #8 (.750-16) #8 (.750-16)	1/2 1/2 1/2	.44 .66 .66	.38 .62 .62	1.75 1.75 1.75	1.50 1.50 1.50	.31 .44 .44	.75 1.25 1.25	5.00 5.25 5.38	.88 1.25 1.25	.62 1.00 1.00	2.88 2.88 3.00
3.25 4.00 5.00	1.0000 1.3750 1.7500	4.50 5.00 6.50	#12 (1.062-12) #12 (1.062-12) #12 (1.062-12)	3/4 3/4 3/4	.88 1.19 1.53	.75 .88 .88	2.00 2.00 2.00	1.75 1.75 1.75	.56 .56 .75	1.50 2.12 2.25	6.25 6.62 7.12	1.62 2 19 2.81	1.25 1.62 2.06	3.50 3.75 4.25
6.00	2.0000	7.50	#16 (1.312-12)	1	1.75	1.00*	2.25	2.25	.88	2.50	8.38*	3.19	2.38	4.88
*With (K)	Rod F = 8	8, LB = 8	3.25 **NPTF ports	s will be fu	rnished a	as standa	rd unles	s SAE st	raight th	read por	ts are sp	ecified		

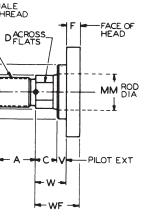

Dimensions Are Affected by Rod Diameter

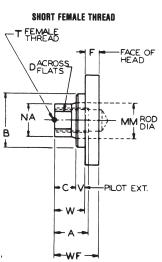
	CY	LINDER	1							Т	(THREAD)							
	BORE	ROD DIA CODE	ROD Dia.	A	B 001 003	C	D	MM Rod Dia.	RD*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT FEMALE SF	v	W	XC	Y	ZC	PSI Rating†
	1.50	D F	.62 1.00	.75 1.12	1 125 1.500	38 .50	50 .88	62 1.00	-	44-20 .75-16	.50-20 88-14	.44-20 .75-15	.25 .50	.62 1 00	6.38 6 75	2.00 2 38	7 25 7 62	1250 1250
	2.00	F G	1.00 1.38	1.12 1.62	1.500 2.000	.50 62	.88 1.12	1.00 1.38	-	.75-16 1.00-14	.88-14 1 25-12	75-16 1.00-14	25 .38	75 1 00	7 25 7 50	2.38 2 62	8.50 8.75	2200 2200
	2.50	F G H	1 00 1.38 1.75	1.12 1.62 2.00	1.500 2 000 2.375	50 62 .75	.88 1.12 1.50	1.00 1.38 1 75	- - -	.75-16 1 00-14 1.25-12	88-14 1.25-12 1.50-12	.75-16 1.00-14 1 25-12	25 38 .50	.75 1.00 1.25	7 38 7 62 7.88	2.38 2 62 2 88	8.62 8 88 9 12	1450 1450 1450
	3.25	G H J	1.38 1.75 2.00	1.62 2.00 2.25	2 000 2.375 2 625	.62 .75 .88	1 12 1.50 1 69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1 25-12 1.50-12 1 75-12	1 00-14 1 25-12 1.50-12	25 .38 .38	.88 1.12 1.25	8 62 8.88 9.00	2.75 3.00 3 12	10 25 10 50 10 62	1500 1500 1500
	4.00	T T	1.75 2.00 2.50	2.00 2 25 3.00	2.375 2.625 3 125	.75 88 1 00	1.50 1 69 2 06	1.75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1 25-12 1.50-12 1.88-12	.25 25 38	1.00 1 12 1.38	9.75 9.88 10.12	3 00 3.12 3 38	11 94 12.06 12 31	1850 1850 1850
2	5.00	JKLM	2.00 2.50 3.00 3 50	2.25 3.00 3.50 3.50	2.625 3.125 3.750 4.250	88 1.00 1.00 1 00	1.69 2.06 2.62 3 00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3 25-12	1 50-12 1 88-12 2 25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	10.50 10.75 10.75 10.75	3.12 3.38 3.38 3.38	13.31 13 56 13 56 13.56	2000 2000 2000 2000
7.	6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3 50 4.00	3.125 3.750 4.250 4.750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.50 3.00 3 50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3 25-12 3 75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1.25 1.25 1.25	12.12 12.12 12.12 12.12 12.12	3.50 3.50 3.50 3.50	15.31 15 31 15.31 15.31	1500 1500 1500 1500

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

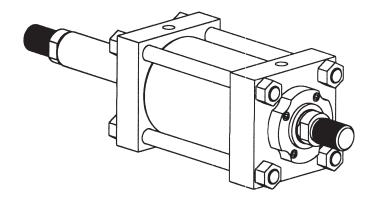
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

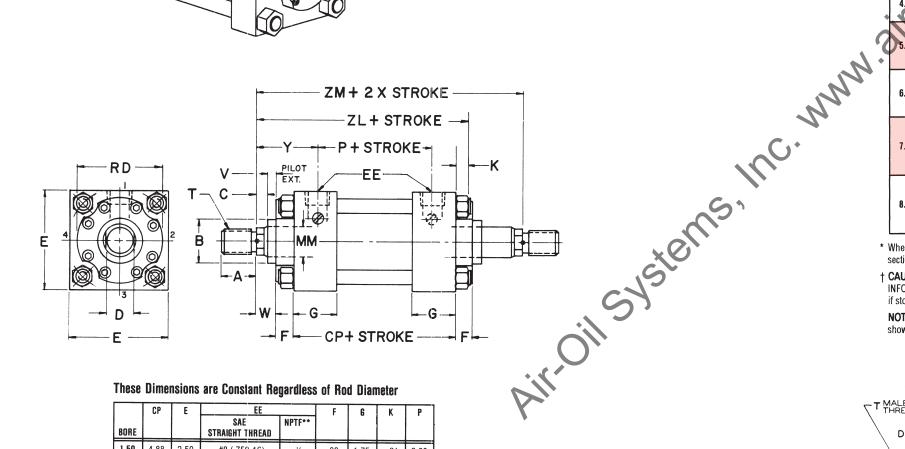
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.




NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

Series 2H and 3L Hydraulic Cylinders


MPU3


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

SERIES 2H 1.50"-8.00" Bores **MXO-D Double Rod End⁺**

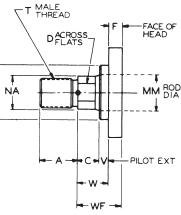
These Dimensions are Constant Regardless of Rod Diameter

	CP	E	EE		F	6	K	Р
BORE			SAE Straight thread	NPTF**				
1.50	4 88	2 50	#8 (750-16)	1/2	.38	1.75	.31	2.88
2.00	4 88	3 00	#8 (.750-16)	1/2	.62	1 75	44	2 88
2.50	5.00	3 50	#8 (750-16)	1/2	62	1 75	.44	3.00
3.25	5.75	4 50	#12 (1.062-12)	3/4	.75	2.00	56	3.50
4.00	6 00	5 00	#12 (1 062-12)	3/4	.88	2 00	.56	3 75
5.00	6 50	6.50	#12 (1.062-12)	3/4	.88	2.00	75	4.25
6.00	7 38	7 50	#16 (1.312-12)	1	1.00*	2.25	.88	4.88
7.00	8 50	8 50	#20 (1 625-12)	1 ¼	1.00	2.75	1 00	5.38
8.00	9 50	9 50	#24 (1 875-12)	1 ½	1.00	3.00	1.06	6.12

* With (K) Rod F = .88

** NPTF ports will be furnished as standard unless SAE straight thread ports are specified. [†] Available in MS2, MS3, MS4, MS7, MF1, MF5, ME5, MT1, MT4, see single rod pages for mounting dimensions and appropriate P.S.I Ratings.

For Models MS2 and MS3 (1.50" thru 5.00" bores), add 25" to Dimension "SS." For Models MS7 and MS4, consult factory for Dimensions "SE" and "SN."


Dimensions are Affected by the Rod Diameter	Dimensions	are	Affected	by	the	Rod	Diameter
---	------------	-----	----------	----	-----	-----	----------

C	LINDER									T (THREAD)							
BORE	ROD DIA. Code	ROD Dia.	A	B 001 003	C	D	MM ROD DIA.	RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	W	Y	ZL	ZM	PSI Rating
1.50	D F	.62 1.00	.75 1.12	1.125 1.500	.38 .50	.50 .88	.62 1.00	-	.44-20 .75-16	.50-20 .88-14	44-20 .75-16	.25 .50	.62 1.00	2.00 2.38	6.19 6.94	6.88 7.62	3000 3000
2.00	F G	1.00 1.38	1.12 1.62	1.500 2.000	.50 .62	.88 1 12	1 00 1.38	-	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	.25 .38	.75 1.00	2.38 2.62	6.69 7.56	7.62 8.12	3000 3000
2.50	F G H	1.00 1.38 1.75	1.12 1.62 2.00	1.500 2.000 2.375	.50 .62 .75	.88 1.12 1.50	1.00 1.38 1.75	- - -	.75-16 1.00-14 1.25-12	.88-14 1.25-12 1.50-12	.75-16 1.00-14 1.25-12	.25 .38 .50	.75 1.00 1.25	2.38 2.62 2.88	6.81 7.69 7.94	7.75 8.25 8.75	3000 3000 3000
3.25	G H J	1.38 1.75 2.00	1.62 2.00 2.25	2.000 2.375 2.625	.62 .75 .88	1.12 1.50 1.69	1.38 1.75 2.00	3.50 3.50 3.88	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12	.25 .38 .38	.88 1.12 1.25	2.75 3.00 3.12	7.94 8.19 8.31	9.00 9.50 9.75	3000 3000 3000
4.00	ΗJK	1.75 2.00 2.50	2.00 2.25 3.00	2.375 2.625 3.125	.75 .88 1.00	1.50 1.69 2.06	1.75 2.00 2.50	3.50 4.25 4.25	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12	.25 .25 .38	1.00 1.12 1.38	3.00 3.12 3.38	8.44 8.56 8.81	9.75 10.00 10.50	3000 3000 3000
5.00	JKLM	2.00 2 50 3.00 3 50	2.25 3.00 3.50 3.50	2.625 3.125 3.750 4.250	.88 1.00 1.00 1.00	1.69 2.06 2.62 3.00	2.00 2.50 3.00 3.50	4.25 4.25 5.62 5.62	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .38 .38	1.12 1.38 1.38 1.38	3.12 3.38 3.38 3.38 3.38	9.25 9.50 9.50 9.50	10.50 11.00 11.00 11.00	3000 3000 3000 3000
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	3.125 3.750 4.250 4.750	1.00 1.00 1.00 1.00	2.06 2.62 3.00 3.38	2.50 3.00 3.50 4.00	4.25 6.38 6.38 6.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12	.38 .25 .25 .25	1.38 1.25 1.25 1.25	3.50 3.50 3.50 3.50 3.50	10.50 10.50 10.50 10.50	11.88 11.88 11.88 11.88	3000 3000 3000 3000
7.00	L M P R	3.00 3.50 4.00 4.50 5.00	3.50 3.50 4.00 4.50 5.00	3.750 4.250 4.750 5.250 5.750	1.00 1.00 1.00 1.00 1.00	2.62 3.00 3.38 3.88 4.25	3.00 3.50 4.00 4.50 5.00	6.38 6.38 6.38 7.50 7.50	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.81 3.81 3.81 3.81 3.81 3.81	11.75 11.75 11.75 11.75 11.75 11.75	13.00 13.00 13.00 13.00 13.00	3000 3000 3000 3000 3000
8.00	M N R S	3.50 4.00 4.50 5.00 5.50	3.50 4.00 4.50 5.00 5.50	4.250 4.750 5.250 5.750 6.250	1.00 1.00 1.00 1.00 1.00	3.00 3.38 3.88 4.25 4.62	3.50 4.00 4.50 5.00 5.50	6.38 6.38 8.00 8.00 8.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	.25 .25 .25 .25 .25 .25	1.25 1.25 1.25 1.25 1.25 1.25	3.94 3.94 3.94 3.94 3.94 3.94	12.81 12.81 12.81 12.81 12.81 12.81	14.00 14.00 14.00 14.00 14.00	3000 3000 3000 3000 3000

- section
- if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

SMALL MALE THREAD T MALE -FACE OF HEAD D ACROSS MM ROD B PILOT EXT.

minus 062 (1.38-5.50 rods)

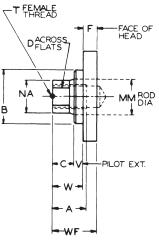
-W

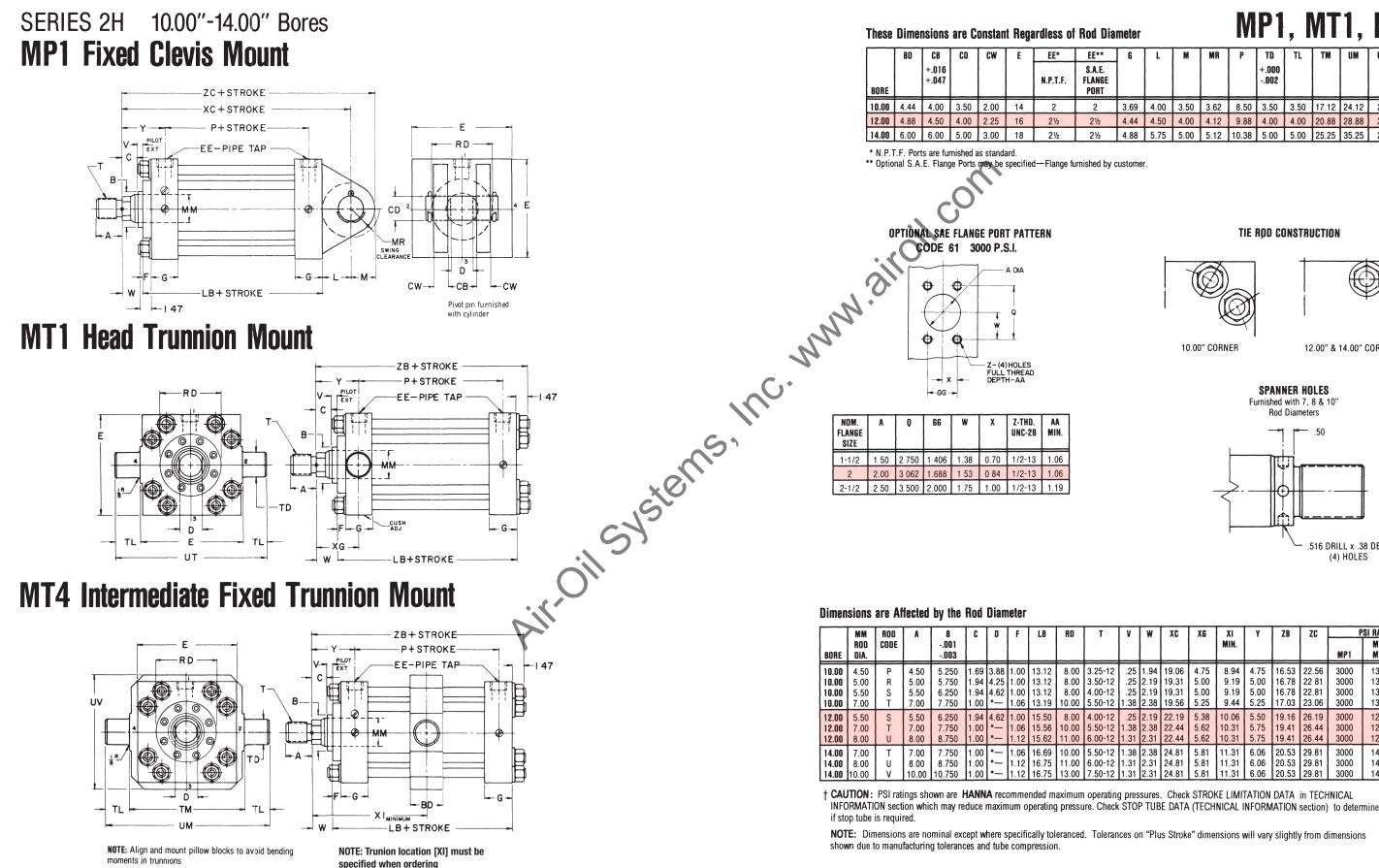
-WF

NA

Series 2H and 3L Hydraulic Cylinders

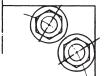
MXO-D


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA


† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

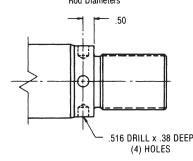
SHORT FEMALE THREAD


Series 2H and 3L Hydraulic Cylinders

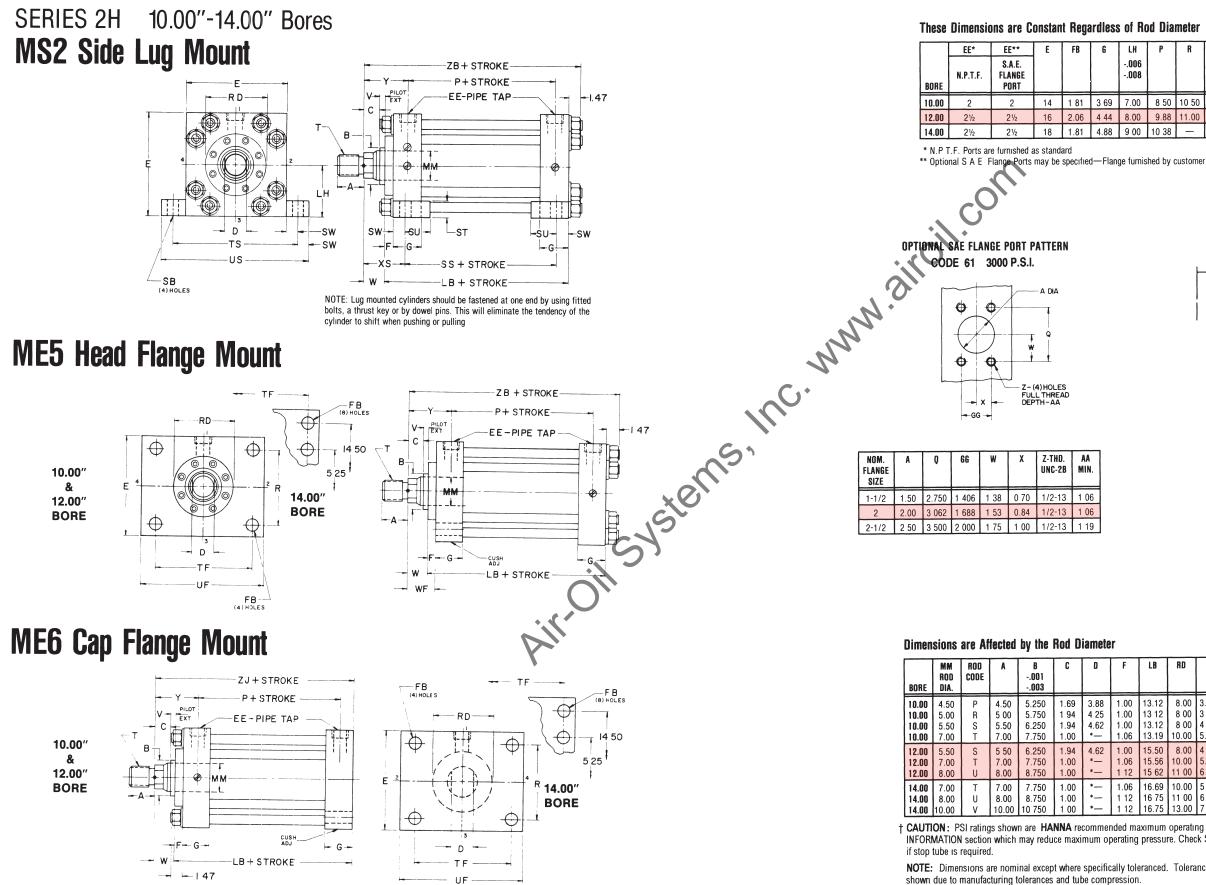
Series 2H and 3L Hydraulic Cylinders

MP1, MT1, MT4

6	L	M	MR	P	TD +.000 002	TL	TM	UM	UT	UV
3.69	4.00	3.50	3.62	8.50	3.50	3.50	17.12	24.12	21	16
4.44	4.50	4.00	4.12	9.88	4.00	4.00	20.88	28.88	24	19.50
4.88	5.75	5.00	5.12	10.38	5.00	5.00	25.25	35.25	28	25.88



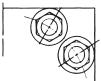
10.00" CORNER


SPANNER HOLES Furnished with 7, 8 & 10" Rod Diameters

12.00" & 14.00" CORNER

٧	W	XC	XG	XI	Y	ZB	ZC	P	SI RATING	†
				MIN.				MP1	MT1 MT2	MT4
.25 .25 .25 .38	1.94 2.19 2.19 2.38	19.06 19.31 19.31 19.56	4.75 5.00 5.00 5.25	8.94 9.19 9.19 9.44	4.75 5.00 5.00 5.25	16.53 16.78 16.78 17.03	22.56 22 81 22.81 23.06	3000 3000 3000 3000	1365 1365 1365 1365 1365	1825 1825 1825 1825 1825
.25 .38 .31	2.19 2.38 2.31	22.19 22.44 22.44	5.38 5.62 5.62	10.06 10.31 10.31	5.50 5.75 5.75	19.16 19.41 19.41	26.19 26.44 26.44	3000 3000 3000	1250 1250 1250	1660 1660 1660
.38 .31 .31	2.38 2.31 2.31	24.81 24.81 24.81	5.81 5.81 5.81	11.31 11.31 11.31	6.06 6.06 6.06	20.53 20.53 20.53	29.81 29.81 29.81	3000 3000 3000	1425 1425 1425	1900 1900 1900

Series 2H and 3L Hydraulic Cylinders

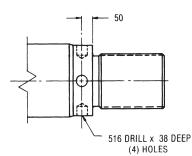


Series 2H and 3L Hydraulic Cylinders

MS2, ME5, ME6

P	R	SB	SS	ST	SU	SW	TF	TS	UF	US
8 50	10 50	1 56	8 88	2 19	3 50	1 62	14	17.25	17.50	20 50
9.88	11.00	1 56	10.50	2.94	4.25	2 00	18	20.00	22	24 00
10 38	-	2 31	10 62	3 94	5 00	2.50	20 50	23 00	24	28 00

TIE ROD CONSTRUCTION



10 00" CORNER

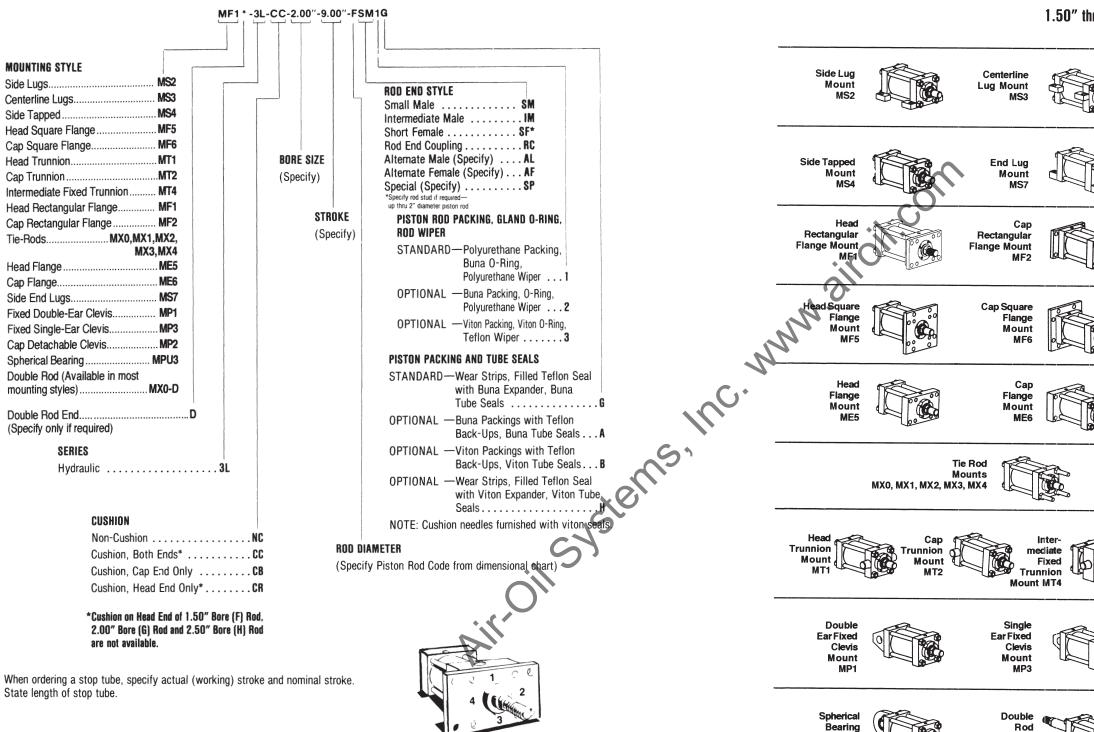
12 00" & 14 00" CORNER

SPANNER HOLES Furnished with 7, 8 & 10" Rod Diameters

PSI Rating† ZJ XS ZB
 13.12
 8.00
 3.25-12
 .25
 1 94

 13.12
 8.00
 3 50-12
 .25
 2 19

 13.12
 8.00
 4 00-12
 .25
 2 19


 13.19
 10.00
 5.50-12
 1.38
 2.38
 2.94 3.19 3.19 3.44 4.56 3000 4.75 15 06 16 53 4 81 4 81 5.06 5.00 15 31 15.31 3000 16 78 16.78 3000 3000 5 25 17.03 15 56 8.00 4 00-12 .25 2.19 3.19 5.19 3000 5.50-12 1.38 2 38 3.44 5.44 7 9/ 3000 10.00 11 00 6 00-12 1.31 2.31 3 44 5 44 3000 2.38 3 44 5.94 3000 10.00 5 50-12 1.38 19 06 11 00 6 00-12 2.31 2.31 19.06 3000 3.44 5 94 6.06 1 31 13.00 7 50-12 3000

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions

HOW TO ORDER

SERIES 3L MEDIUM-DUTY HYDRAULIC CYLINDERS

Port location: if other than position 1, must be specified. Mounting accessories must be specified if required. See Page 85.

TECHNICAL INFORMATION INSTALLATION, OPERATION AND MAINTENANCE MOUNTING ACCESSORIES, OPTIONS

Mount MX0-D

Mount

MPU3

1.50" thru 6.00" Bores

	Description	Page	No.
	MS2	Side Lug Mount	. 46
	MS3	Centerline Lug Mount	
	MS4	Side Tapped Mount	50
	MS7	End Lug Mount	52
	MF1	Head Rectangular Flange Mount	54
	MF2	Cap Rectangular Flange Mount	56
23	MF5	Head Square Flange Mount	
	MF6	Cap Square Flange Mount	60
578	ME5	Head Flange Mount	62
	ME6	Cap Flange Mount	64
	MXO-1-2-3-4	Tie Rod Mounts	. 66
~	MT1	Head Trunnion Mount	. 68
	MT2	Cap Trunnion Mount	. 70
	MT4	Intermediate Fixed Trunnion Mount	.72
	MP1	Fixed Double Ear Clevis Mount	.74
	MP3	Fixed Single Ear Clevis Mount	74
	MP2	Detachable Clevis Mount	.74
	MPU3	Spherical Bearing Mount	76
	MXO-D	Double Rod Mount	78
			80 88 94

Series 2H and 3L Hydraulic Cylinders

Series 3L **Medium-Duty** Hydraulic Cylinders

Hanna's Series 3L medium-pressure hydraulic cylinders are designed and built to meet today's exacting industrial requirements.

Extensive laboratory testing and countless field applications have proved conclusively that 3L cylinders provide millions of maintenance-free cycles. The reason: the combination of Hanna's unique Duralon® rod bearing and our glass-filled Teflon® piston seal with a bronze-impregnated bearing strip completely eliminates metal-to-metal contact at bearing surfaces.

Series 3L cylinders give you virtually unlimited flexibility in machinery design, with a full range of bore sizes (1.50" through 6.00") offered. Developed for pressure ratings of 600 to 1,800 p.s.i., Series 3L cylinders are available in 24 N.F.P.A. mounting styles.

When ordering, specify piston packing code "G" for moderate temperatures, and Code "H" for high temperature service.

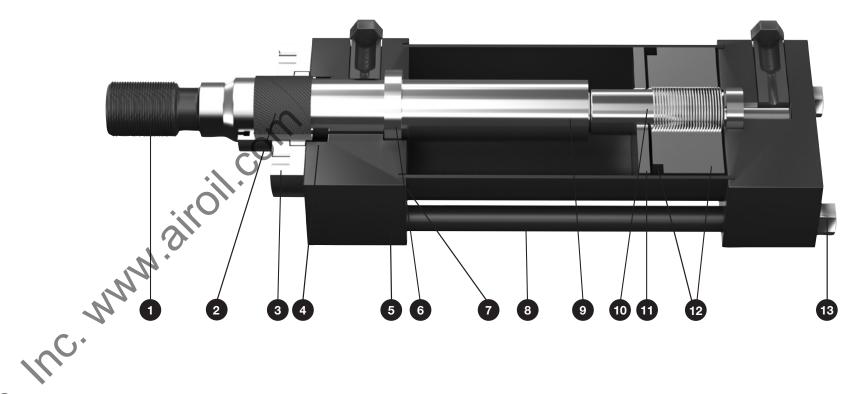
Duralon is a Trademark of Rexnord, Inc Teflon and Dacron are Trademarks of DuPont Company

Series 3L Features and Benefits

1. Piston Rod End

Integral thread construction, precision-machined for close concentricity Studded rod ends are available

2. Duralon Rod Bearing


2. Duraion Rod Bearing Hanna's high-tech Duraion rod bearing is designed to perform under poorly lubricated, high-load conditions. The exact combination of woven Tetion and Dacron®, plus the fiberglass structural shell, increases load-carrying capabilities and eliminates "cold-flow" associated with Teflon. Duralon bearings are capable of sustaining much higher compressive loads than either bronze or cast iron, have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

3. Gland Construction

Two-piece (gland plus retainer plate), bolted-on or fullface retainer design Packings may be captive in the gland or located in the head.

4. Rod Seal

Series 3L cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance. Viton U-cup is available for higher temperature service.

5. Heads

Steel heads are precision-machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

6. Cushion Check Seals

With self-aligning, full-floating design, the cushion check seals are closely fitted to cushion sleeve and spear. The seals serve as both cushion seal and check valve, providing effective cushioning and fast breakaway.

7. Tube Seal

Buna-N O-ring seal. Viton available for higher temperature service.

8. Tubing

Steel tubing is precision-honed to a 16-20 micro-inch finish for close fit to piston bearing and tube wall. Chrome-plated for wear resistance.

9. Piston Rod

Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failures. The rods provide 100,000 minimum yield strength in diameters up to 3.50"; 59,000 average yield strength in 4.00" diameter and above. All sizes are hard chrome plated for scratch

Series 2H and 3L Hydraulic Cylinders

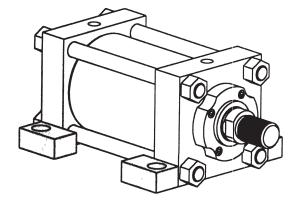
and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish. Rods up to 4.00" diameter are also case hardened for dent resistance

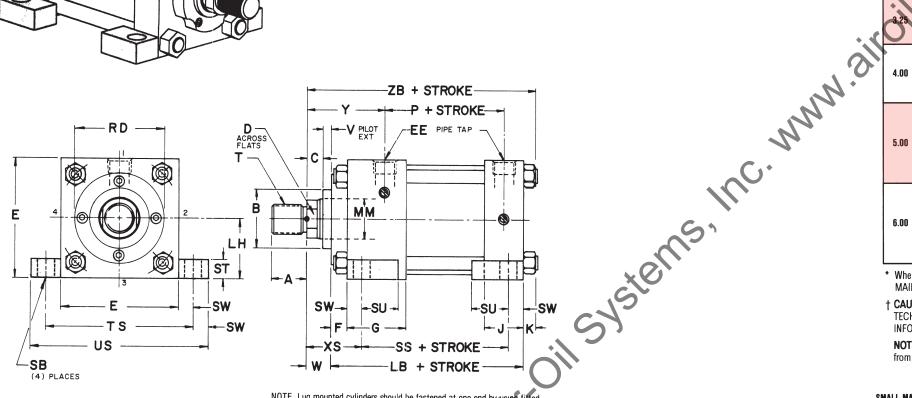
10. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.

11. Piston

One-piece piston of high impact-resistant ductile iron threaded to piston rod, and furnished with breakaway spirals on each side.

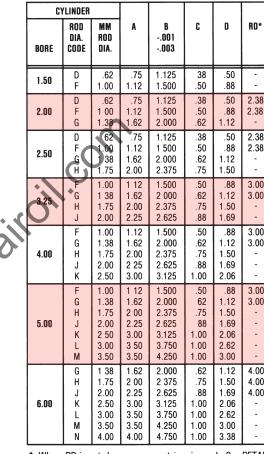

12. Piston Sealing System


Hanna's glass-filled, O-ring energized piston seal provides a positive seal without problems such as rollover or extrusion that are associated with U-cup type seals. A bronze-filled Teflon bearing strip provides a non-metallic bearing point on the piston, assuring long life and extremely low friction.

13. Tie Rods

Made from high-strength steel, the tie rods are prestressed for fatigue resistance.

SERIES 3L 1.50"-6.00" Bores **MS2 Side Lug Mount**



NOTE. Lug mounted cylinders should be fastened at one end by using fitted bolts, a thrust key or by dowel pins. This will eliminate the tende of the cylinder to shift when pushing or pulling.

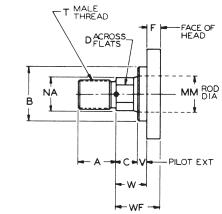
These Dimensions are Constant Regardless of Rod Diameter

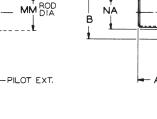
BORE	E	EE (NPTF)	F	6	J	К	LB	LH 006 008	Р	SB	SS	ST	SU	SW	TS ±.010	US
1.50	2.00	3/8	.38	1.50	1.00	.25	4.00	1.000	2.31	.438	2.88	50	.94	.38	2.75	3.50
2.00	2.50	3/8	.38	1.50	1.00	.31	4.00	1.250	2.31	.438	2.88	.50	.94	38	3.25	4.00
2.50	3.00	3/8	.38	1.50	1 00	31	4.12	1.500	2.44	.438	3.00	.50	.94	.38	3.75	4.50
3.25	3.75	1/2	62	1.75	1.25	.38	4.88	1.875	2.69	562	3.25	75	1.25	.50	4.75	5.75
4.00	4 50	1/2	.62	1.75	1.25	.38	4.88	2.250	2.69	.562	3.25	.75	1.25	.50	5.50	6.50
5.00	5.50	1/2	.62	1.75	1.25	.44	5.12	2.750	2.94	.812	3.12	1 00	1.56	69	6.88	8.25
6.00	6.50	3/4	75	2.00	1.50	.44	5.75	3.250	3 19	.812	3 62	1 00	1.56	.69	7.88	9.25

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMĂTION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.




-FACE OF HEAD

THREAD

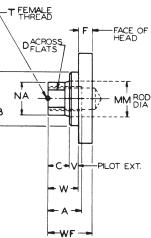
NA

D ACROSS

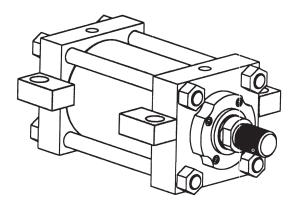
NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

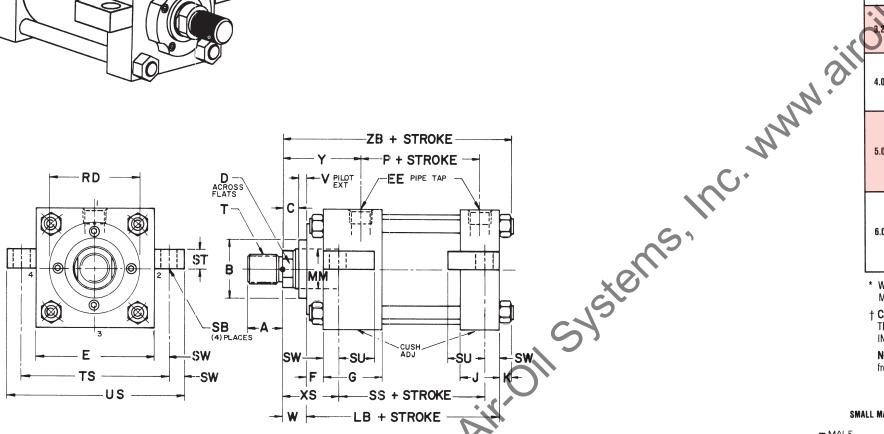
⊷w

-WF


Series 2H and 3L Hydraulic Cylinders

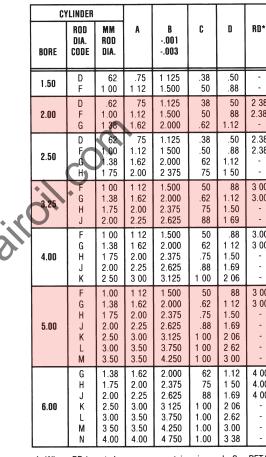
		T (THREAD)							
*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female SF	V	W	XS	Ŷ	ZB	PSI Rating†
	.44-20 .75-16	.50-20 .88-14	.44-20 75-16	.25 .50	.62 1.00	1.38 1.75	1.88 2.25	4.88 5.25	1800 1800
8	.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.38 1.75 2.00	1.88 2.25 2.50	4.94 5.31 5.56	1800 1800 1800
8 8	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.38 1.75 2.00 2.25	1.88 2.25 2.50 2.75	5.06 5.44 5.69 / 5.94	1000 1400 1400 1400
0	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.88 2.12 2.38 2.50	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	1300 1300 1300 1300 1300
00 10	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 38 .50 .50 62	.75 1.00 1.25 1.38 1.62	1.88 2.12 2.38 2.50 2 75	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	900 900 900 900 900
00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	25 38 .50 .50 .62 62 62	75 1.00 1.25 1.38 1.62 1.62 1.62	2.06 2.31 2.56 2.69 2.94 2.94 2.94	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	750 1000 1000 1000 1000 1000 1000
)0)0)0	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 50 .50 .50 50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.31 2.56 2.69 2.94 2.94 2.94 2.94 2.94	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69 7.69	750 750 750 750 750 750 750 750


MS2


STANDARD ROD END STYLES

INTERMEDIATE MALE THREAD

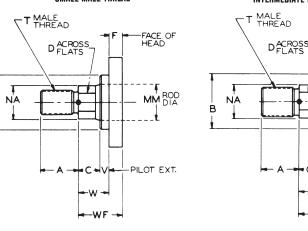
SERIES 3L 1.50"-6.00" Bores **MS3 Centerline Lug Mount**



NOTE: Lug mounted cylinders should be fastened at one end by using fitted bolts, a thrust key or by dowel pins This will eliminate the tendency of the cylinder to shift when pushing or pulling.

These Dimensions are Constant Regardless of Rod Diameter

в	ORE	E	EE (NPTF)	F	6	J	К	LB	P	SB	SS	ST	SU	SW	TS ±.010	US
	.50	2 00	3/8	.38	1.50	1 00	.25	4.00	2 31	438	2.88	50	.94	.38	2 75	3 50
	.00	2 50	3/8	.38	1 50	1.00	31	4 00	2 31	.438	2 88	50	.94	38	3.25	4.00
	.50	3 00	3/8	38	1 50	1.00	31	4 12	2 44	438	3.00	.50	94	.38	3.75	4.50
	.25	3 75	1/2	62	1.75	1.25	.38	4.88	2 69	562	3.25	.75	1 25	.50	4.75	5.75
	.00	4 50	1/2	62	1 75	1 25	38	4 88	2 69	562	3 25	.75	1 25	50	5 50	6.50
	.00	5.50	1/2	62	1 75	1 25	44	5 12	2 94	.812	3 12	1 00	1.56	69	6.88	8.25
6	.00	6.50	3/4	75	2 00	1 50	.44	5 75	3 19	812	3.62	1.00	1 56	69	7 88	9.25

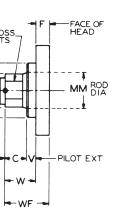

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

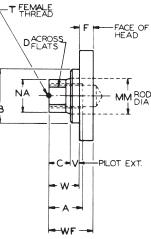
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures., Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

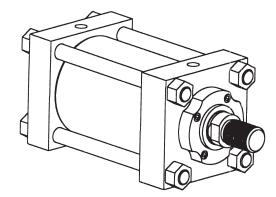
SMALL MALE THREAD

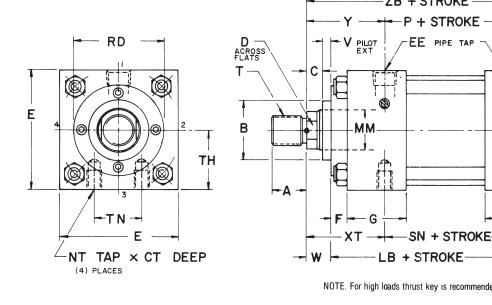
в


NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1 38-5 50 rods)


Series 2H and 3L Hydraulic Cylinders

								BVL	UU
	•	T (THREAD)							
D*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female SF	v	w	XS	Y	ZB	PSI Rating†
-	44-20 .75-16	50-20 .88-14	44-20 75-16	25 50	62 1.00	1.38 1 75	1.88 2 25	4 88 5.25	1800 1800
38 38 -	.44-20 .75-16 1.00-14	50-20 88-14 1.25-12	44-20 75-16 1 00-14	.25 50 .62	62 1.00 1 25	1.38 1 75 2.00	1.88 2.25 2 50	4.94 5 31 5.56	1800 1800 1800
38 38 - -	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	44-20 75-16 1 00-14 1.25-12	.25 .50 .62 75	.62 1 00 1.25 1.50	1 38 1.75 2 00 2.25	1.88 2 25 2.50 2.75	5.06 5.44 5 69 5 94	1000 1400 1400 1400
00 00 - -	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1 50-12 1 75-12	75-16 1.00-14 1 25-12 1 50-12	25 38 50 50	75 1.00 1 25 1 38	1.88 2.12 2.38 2.50	2.38 2.62 2 88 3.00	6 00 6.25 6 50 6 62	1300 1300 1300 1300 1300
00 00 - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1 25-12 1 50-12 1.75-12 2.25-12	75-16 1 00-14 1 25-12 1.50-12 1.88-12	25 .38 50 50 62	75 1.00 1 25 1.38 1.62	1.88 2.12 2.38 2.50 2.75	2.38 2.62 2.88 3 00 3 25	6 00 6.25 6 50 6 62 6.88	900 900 900 900 900
00 00 - - -	.75-16 1.00-14 1 25-12 1.50-12 1.88-12 2.25-12 2 50-12	88-14 1.25-12 1 50-12 1 75-12 2 25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1 50-12 1.88-12 2 25-12 2.50-12	25 38 50 .50 .62 62 .62	.75 1 00 1 25 1 38 1.62 1 62 1.62	2.06 2 31 2.56 2 69 2.94 2.94 2.94	2.38 2 62 2 88 3.00 3 25 3.25 3.25 3.25	6.31 6 56 6 81 6.94 7 19 7 19 7 19 7 19	750 1000 1000 1000 1000 1000 1000
00 .00 00 - - -	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2 25-12 2.75-12 3 25-12 3.75-12	1 00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3 00-12	.25 38 38 50 50 50 50	.88 1.12 1.25 1 50 1 50 1.50 1 50	2.31 2 56 2.69 2 94 2.94 2.94 2.94 2 94	2 75 3 00 3 12 3 38 3.38 3.38 3.38 3.38	7 06 7 31 7 44 7 69 7.69 7.69 7.69	750 750 750 750 750 750 750


MS3


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

SERIES 3L 1.50"-6.00" Bores **MS4 Side Tapped Mount**

These Dimensions are Constant Regardless of Rod Diameter

BORE	E	TH 006 008	EE (NPTF)	F	6	J	К	LB	NT	P	SN	TN ±.010
1.50	2.00	1 000	3/8	.38	1.50	1.00	.25	4 00	.25-20	2.31	2.25	.62
2.00	2 50	1 250	3/8	38	1.50	1 00	31	4.00	.31-18	2 31	2.25	.88
2.50	3.00	1 500	3/8	38	1.50	1 00	31	4 12	.38-16	2.44	2.38	1 25
3.25	3.75	1 875	1/2	.62	1.75	1.25	38	4.88	50-13	2.69	2.62	1.50
4.00	4.50	2 250	1/2	.62	1.75	1 25	.38	4 88	.50-13	2.69	2 62	2.06
5.00	5.50	2 750	1/2	62	1 75	1.25	.44	5 12	.62-11	2.94	2 88	2 69
6.00	6 50	3.250	3/4	75	2.00	1 50	.44	5 75	.75-10	3.19	3 12	

ZB + STROKE

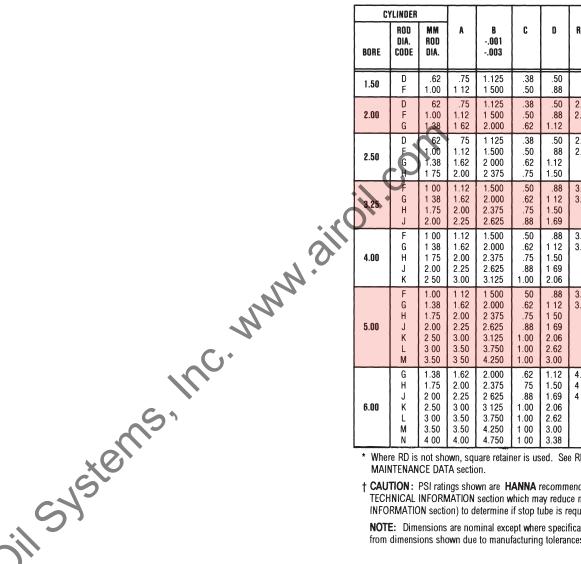
MM

- G

XT

6

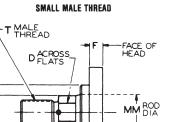
- P + STROKE -

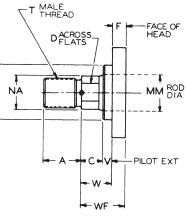

-EE PIPE TAP

-SN + STROKE -

-LB + STROKE

A




MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

PILOT EXT

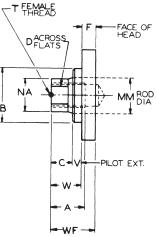
NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5.50 rods)

-w-

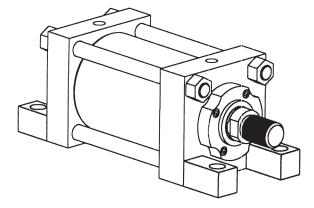
-WF

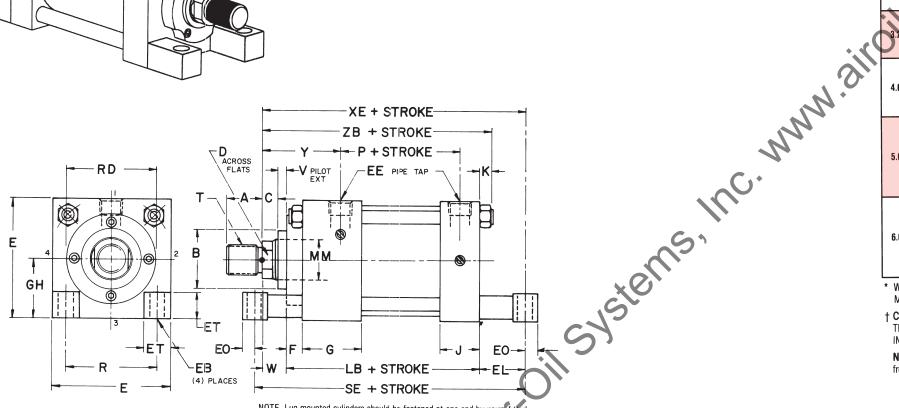
NA

Series 2H and 3L Hydraulic Cylinders

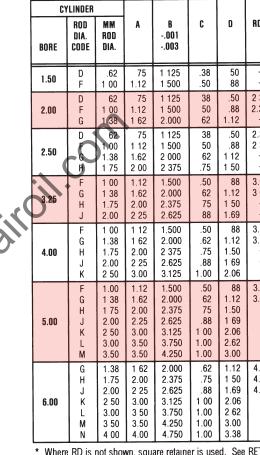

MGV

							IVI	134
SMALL MALE SM	T (THREAD) INTER- MEDIATE MALE IM	SHORT Female Sf	V	*CT	ХТ	Ŷ	ZB	PSI Rating†
.44-20	.50-20	.44-20	.25	.38	1.94	1.88	4.88	1800
.75-16	.88-14	.75-16	.50	-	-	2.25	5 25	1800
.44-20	.50-20	44-20	.25	.38	1.94	1.88	4.94	1800
.75-16	.88-14	75-16	.50	.38	2.31	2.25	5.31	1800
1.00-14	1.25-12	1 00-14	.62	-	-	2.50	5.56	1800
.44-20	.50-20	.44-20	.25	50	1.94	1 88	5.06	1000
.75-16	.88-14	.75-16	.50	.50	2.31	2.25	5.44	1400
1 00-14	1.25-12	1.00-14	62	50	2.56	2.50	5.69	1400
1.25-12	1.50-12	1.25-12	.75	-	-	2.75	5.94	1400
.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	50 .50 .50 .50	2.44 2.69 2.94 3.06	2 38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	1300 1300 1300 1300 1300
.75-16	.88-14	.75-16	.25	.75	2.44	2.38	6 00	900
1.00-14	1.25-12	1.00-14	.38	75	2.69	2.62	6.25	900
1.25-12	1.50-12	1.25-12	.50	.75	2.94	2.88	6.50	900
1.50-12	1.75-12	1.50-12	.50	75	3.06	3.00	6.62	900
1.88-12	2.25-12	1.88-12	62	.75	3.31	3.25	6.88	900
.75-16	.88-14	75-16	.25	1.00	2.44	2.38	6.31	750
1.00-14	1.25-12	1.00-14	.38	1 00	2.69	2 62	6.56	1000
1.25-12	1.50-12	1.25-12	.50	1.00	2.94	2.88	6.81	1000
1.50-12	1.75-12	1.50-12	.50	1.00	3.06	3 00	6.94	1000
1.88-12	2.25-12	1.88-12	62	1 00	3.31	3.25	7 19	1000
2.25-12	2.75-12	2.25-12	62	1.00	3.31	3 25	7.19	1000
2.50-12	3.25-12	2.50-12	.62	1.00	3.31	3.25	7.19	1000
1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	25 38 38 .50 .50 50 .50	1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	2.81 3.06 3.19 3.44 3.44 3.44 3.44 3.44	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7 06 7 31 7 44 7.69 7.69 7.69 7.69 7 69	750 750 750 750 750 750 750 750
	SMALL MALE SM -44-20 .75-16 .44-20 .75-16 1.00-14 1.25-12 .75-16 1.00-14 1.25-12 .75-16 1.00-14 1.25-12 1.50-12 1.50-12 1.88-12 2.25-12 2.50-12 1.00-14 1.25-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12	SMALL MALE SM INTER- MEDIATE MALE IM SMALL MALE SM INTER- MALE IM MALE SM INTER- MEDIATE MALE IM .44-20 .50-20 .75-16 .88-14 .00-14 1.25-12 .100-14 1.25-12 .100-14 1.25-12 .75-16 .88-14 100-14 1.25-12 .75-16 .88-14 1.00-14 1.25-12 .75-16 .88-14 1.00-14 1.25-12 .75-16 .88-14 1.00-14 1.25-12 .50-12 1.75-12 1.50-12 1.75-12 1.88-12 2.25-12 .50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12 1.50-12	MALE SM MEDIATE MALE IM FEMALE SF MALE SM MALE IM FEMALE SF .44-20 .50-20 .44-20 .75-16 .88-14 .75-16 .44-20 .50-20 .44-20 .75-16 .88-14 .75-16 .00-14 1.25-12 1.00-14 .44-20 .50-20 .44-20 .75-16 .88-14 .75-16 1.00-14 1.25-12 1.00-14 1.25-12 1.00-14 1.25-12 1.00-14 1.25-12 1.00-14 1.25-12 1.50-12 1.25-12 .75-16 .88-14 .75-16 .00-14 1.25-12 1.00-14 .25-12 1.50-12 1.25-12 .50-12 1.75-12 1.50-12 .50-12 1.75-12 1.00-14 .25-12 1.50-12 1.88-12 .50-12 1.55-12 1.00-14 .25-12 1.50-12 1.88-12 .50-12 1.55-12 1.00-14	SMALL MALE SM ALE SM INTER- MEDIATE MALE IM SHORT FEMALE SF V .44-20 .50-20 .44-20 .25 .75-16 .88-14 .75-16 .50 .44-20 .50-20 .44-20 .25 .75-16 .88-14 .75-16 .50 .00-14 1.25-12 1.00-14 .62 .44-20 .50-20 .44-20 .25 .75-16 .88-14 .75-16 .50 1.00-14 1.25-12 1.00-14 .62 .42-20 .50-20 .44-20 .25 .75-16 .88-14 .75-16 .50 1.00-14 1.25-12 1.00-14 .62 1.25-12 1.00-14 .38 .25-12 .50 1.50-12 1.50-12 1.25-12 .50 .50 .75-16 .88-14 .75-16 .25 .50 .50-12 1.75-12 1.50-12 .50 .50 .50-12 1.75-12 1.50-12 .50	SMALL MALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SM ALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF MALE SF SF SF MALE SF	SMALE MALE SM ALE SM ALE SM MALE SM MALE SM MALE IM INTER- FEMALE SF FEMALE SF V FCT SF SM SF XT .44-20 .75-16 .50-20 .88-14 .44-20 .75-16 .25 .38 1.94 .75-16 .44-20 .75-16 .50-20 .88-14 .44-20 .75-16 .25 .38 1.94 .75-16 .44-20 .00-14 .50-20 .25 .44-20 .50 .25 .38 1.94 .75-16 .00-14 1.25-12 1.00-14 .62 .25 .50 .38 1.94 .75-16 .00-14 1.25-12 1.00-14 .62 .50 .25 .50 2.31 .00-14 1.00-14 1.25-12 1.00-14 .25-12 .50 .50 2.31 .50 1.00-14 1.25-12 1.00-14 .25-12 .50 .50 2.44 1.00-14 1.25-12 .50 .50 2.94 1.50-12 1.50-12 .50 .50 3.06 .75-16 .88-14 .75-16 .25 .100 2.44 .00-14 1.25-12 .50 .75 2.94 .50-12 1.50-12 .50 .50 .50 <	SMALL MALE SM ALE SM ALE SM MALE SM MALE SM MALE SM MALE NM ALE SM MALE SM MALE SM MALE NM MALE NM MALE NM MALE NM MALE NM MALE NM MALE NM MALE NM MALE SF MALE SF MALE	Image: Signal Line of the sector of


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

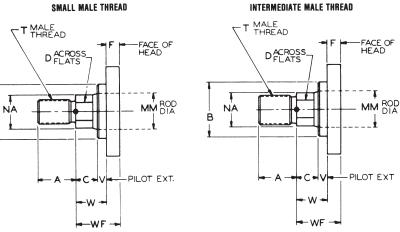
SERIES 3L 1.50"-6.00" Bores **MS7 End Lug Mount**


NOTE Lug mounted cylinders should be fastened at one end by using fitted bolts, a thrust key or by dowel pins This will eliminate the tendency of the cylinder to shift when pushing or pulling

These Dimensions are Constant Regardless of Rod Diameter

BORE	E	GH 006 008	EB	EE (NPTF)	EL	EO	ET	F	6	J	K	LB	P	R ±.010	SE
1.50	2.00	1 000	31	3/8	.75	.34	56	38	1 50	1.00	25	4.00	2.31	1.43	5.50
2.00	2.50	1.250	38	3/8	.94	31	62	.38	1.50	1.00	31	4.00	2.31	1.84	5.88
2.50	3.00	1 500	.38	3/8	1.06	.31	81	.38	1 50	1.00	31	4 12	2.44	2.19	6.25
3.25	3 75	1.875	44	1/2	.88	.38	1.00	.62	1.75	1.25	.38	4.88	2.69	2.76	6.62
4.00	4 50	2.250	.44	1/2	1.00	38	1.19	62	1 75	1.25	.38	4.88	2.69	3.32	6.88
5.00	5 50	2 750	56	1/2	1.06	.50	1 40	62	1.75	1.25	.44	5.12	2.94	4.10	7.25
6.00	6.50	3.250	56	3/4	1.00	50	1 62	.75	2 00	1.50	44	5.75	3.19	4.88	7 75

CAUTION: Check for interference between rod attachment and mounting lug If necessary, specify longer than standard "C" dimension

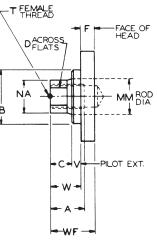


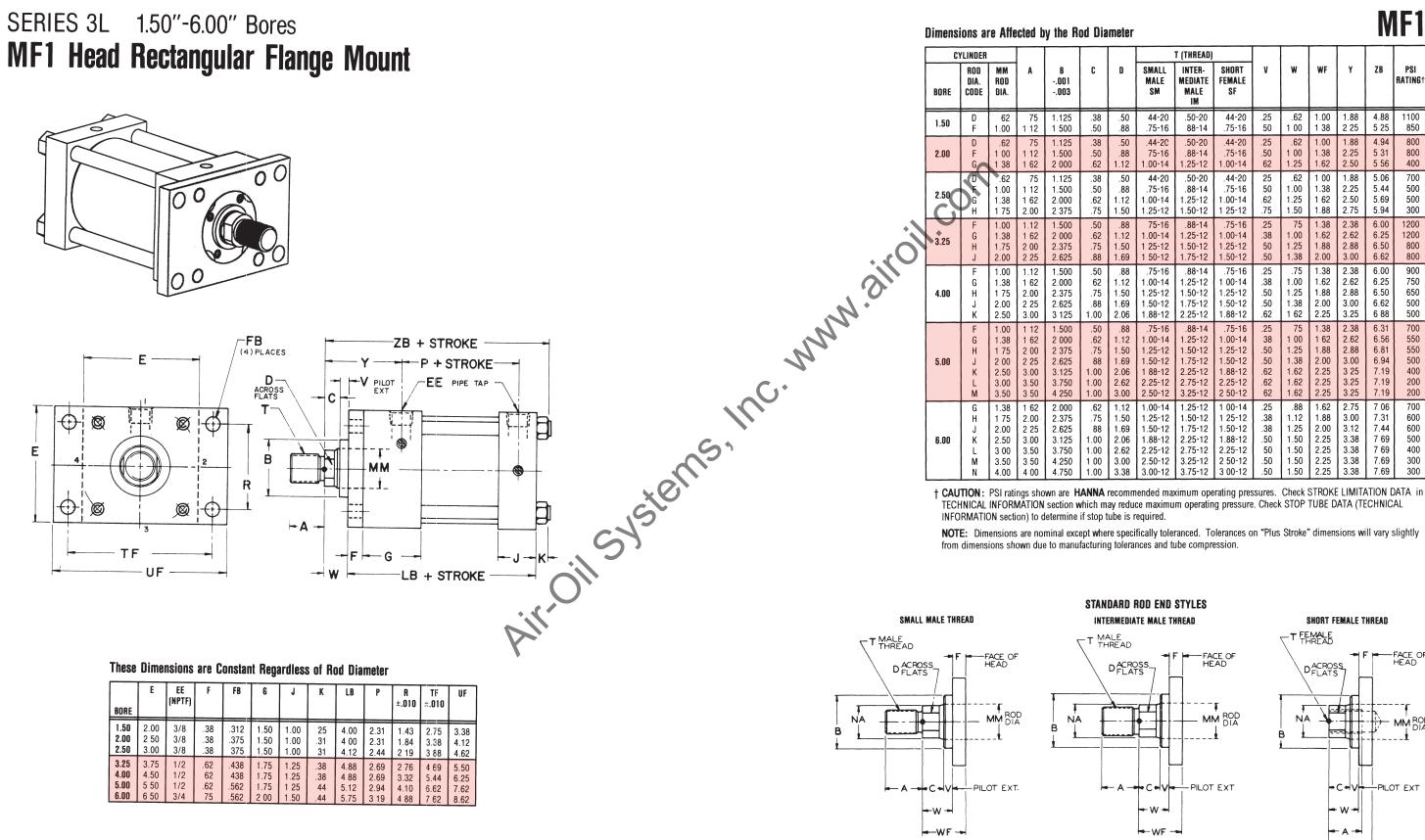
MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMĂTION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1.38-5 50 rods)

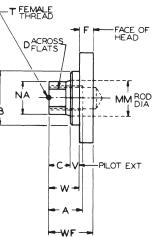

R


Series 2H and 3L Hydraulic Cylinders

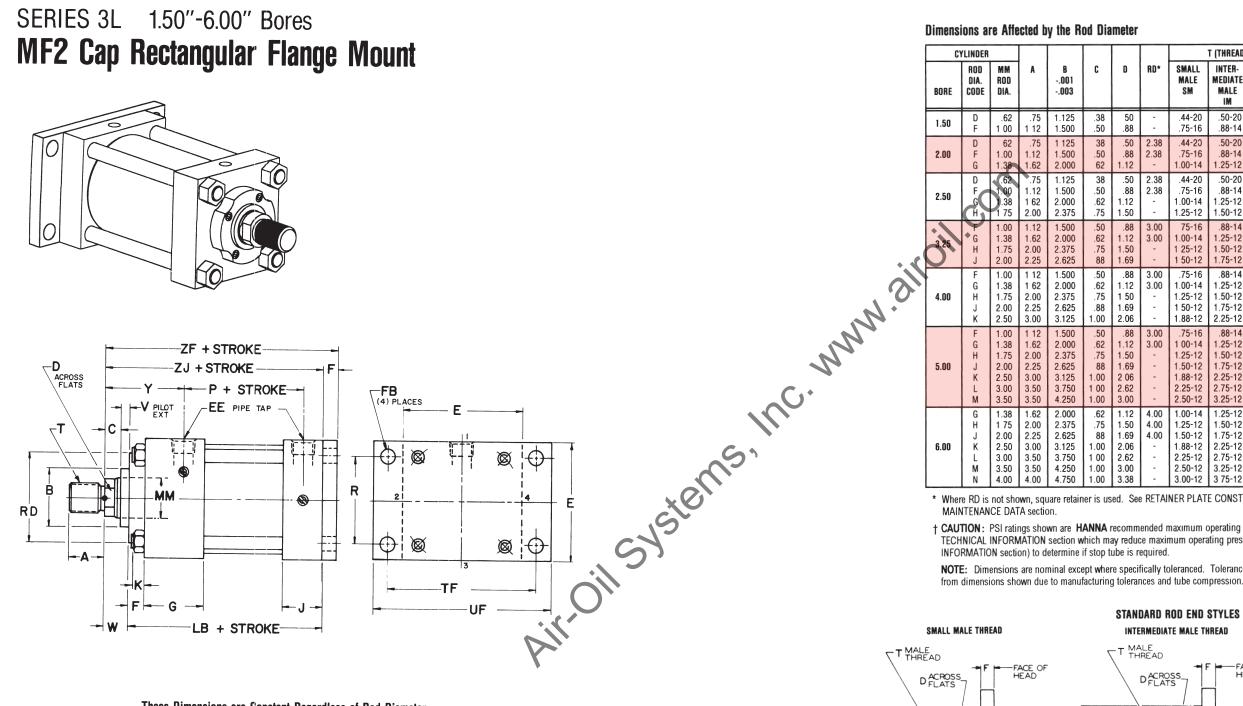
								M	S7
10*	SMALL Male SM	T (THREAD) INTER- Mediate Male IM	SHORT Female Sf	v	w	XE	Y	ZB	PSI Rating†
-	.44-20 .75-16	.50-20 88-14	44-20 75-16	.25 50	.62 1.00	5.38 5.75	1 88 2 25	4 88 5.25	1800 1800
38 .38 -	44-20 .75-16 1.00-14	.50-20 .88-14 1 25-12	.44-20 75-16 1.00-14	25 50 62	62 1.00 1.25	5 56 5 94 6.19	1.88 2.25 2.50	4 94 5 31 5 56	1800 1800 1800
2.38 2.38 - -	.44-20 .75-16 1 00-14 1.25-12	50-20 88-14 1.25-12 1.50-12	44-20 75-16 1.00-14 1 25-12	.25 .50 .62 .75	62 1.00 1 25 1 50	5 81 6.19 6.44 6.69	1 88 2 25 2.50 2 75	5.06 5.44 5 69 5 94	1000 1400 1400 1400
3.00 3.00 - -	.75-16 1.00-14 1 25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1 50-12	25 .38 .50 .50	.75 1.00 1.25 1 38	6.50 6.75 7.00 7.12	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	1300 1300 1300 1300 1300
3.00 3.00 - -	75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1 50-12 1.75-12 2 25-12	75-16 1.00-14 1 25-12 1.50-12 1.88-12	.25 .38 .50 50 .62	.75 1 00 1.25 1.38 1.62	6.62 6.88 7 12 7 25 7.50	2.38 2.62 2 88 3 00 3.25	6.00 6 25 6.50 6.62 6.88	900 900 900 900 900
3.00 3.00 - - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	75-16 1 00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 62 .62 .62	75 1.00 1.25 1.38 1.62 1.62 1.62 1.62	6.94 7 19 7.44 7.56 7.81 7.81 7.81	2.38 2 62 2 88 3.00 3.25 3.25 3.25	6 31 6 56 6 81 6 94 7 19 7 19 7 19 7 19	750 1000 1000 1000 1000 1000 1000
4.00 4.00 4.00 - - -	1.00-14 1.25-12 1 50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1 75-12 2 25-12 2 75-12 3.25-12 3 75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	25 .38 .50 50 50 .50	.88 1.12 1.25 1 50 1 50 1 50 1 50 1 50	7.62 7.88 8.00 8.25 8.25 8.25 8.25 8.25	2.75 3.00 3 12 3 38 3.38 3.38 3.38 3.38	7 06 7 31 7 44 7 69 7.69 7.69 7 69 7 69	750 750 750 750 750 750 750 750

Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND

STANDARD ROD END STYLES INTERMEDIATE MALE THREAD


minus .062 (1.38-5 50 rods)

Series 2H and 3L Hydraulic Cylinders


ler								IV	ΙΓΙ
	SMALL Male Sm	T (THREAD) INTER- MEDIATE Male IM	SHORT Female Sf	v	w	WF	Y	ZB	PSI Rating†
50	44-20	.50-20	44-20	.25	.62	1.00	1.88	4.88	1100
38	.75-16	88-14	.75-16	50	1 00	1 38	2 25	5 25	850
50	.44-20	.50-20	.44-20	.25	.62	1.00	1.88	4.94	800
38	75-16	.88-14	.75-16	.50	1 00	1.38	2.25	5 31	800
12	1.00-14	1.25-12	1.00-14	62	1.25	1.62	2.50	5 56	400
50	44-20	.50-20	.44-20	25	.62	1 00	1.88	5.06	700
38	.75-16	.88-14	.75-16	50	1.00	1.38	2.25	5.44	500
12	1.00-14	1.25-12	1.00-14	.62	1.25	1 62	2.50	5.69	500
50	1.25-12	1.50-12	1 25-12	.75	1.50	1.88	2.75	5.94	300
88	75-16	.88-14	.75-16	.25	75	1.38	2.38	6.00	1200
12	1.00-14	1.25-12	1.00-14	.38	1.00	1.62	2.62	6.25	1200
50	1 25-12	1.50-12	1.25-12	50	1.25	1.88	2.88	6.50	800
69	1 50-12	1.75-12	1.50-12	.50	1.38	2.00	3.00	6.62	800
88	.75-16	.88-14	.75-16	.25	.75	1.38	2.38	6.00	900
12	1.00-14	1.25-12	1 00-14	.38	1.00	1.62	2.62	6.25	750
50	1.25-12	1.50-12	1.25-12	.50	1.25	1.88	2.88	6.50	650
59	1.50-12	1.75-12	1.50-12	.50	1.38	2.00	3.00	6.62	500
06	1.88-12	2.25-12	1.88-12	.62	1 62	2.25	3.25	6 88	500
88 12 50 69 06 62 00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2 50-12	.25 38 .50 .50 .62 .62 62	75 1 00 1.25 1.38 1.62 1.62 1.62	1.38 1 62 1.88 2.00 2.25 2.25 2.25 2.25	2.38 2.62 2.88 3.00 3 25 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	700 550 550 500 400 200 200
12 50 59 06 62 00 38	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1 00-14 1 25-12 1.50-12 1.88-12 2.25-12 2 50-12 3 00-12	.25 .38 .38 .50 50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	1.62 1.88 2.00 2.25 2.25 2.25 2.25 2.25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7 06 7.31 7.44 7 69 7 69 7.69 7.69 7.69	700 600 500 400 300 300

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

SHORT FEMALE THREAD

ME1

BORE	E	EE (NPTF)	F	FB	6	J	К	LB	P	R ±.010	TF ±.010	UF
1.50	2.00	3/8	38	.312	1.50	1 00	.25	4.00	2 31	1.43	2 75	3.38
2.00	2 50	3/8	38	.375	1.50	1.00	31	4.00	2.31	1 84	3.38	4.12
2.50	3 00	3/8	.38	375	1.50	1 00	31	4.12	2.44	2.19	3.88	4 62
3.25	3.75	1/2	62	438	1 75	1 25	38	4 88	2.69	2 76	4.69	5.50
4.00	4 50	1/2	62	.438	1 75	1.25	.38	4.88	2.69	3 32	5.44	6.25
5.00	5.50	1/2	62	.562	1.75	1 25	44	5.12	2.94	4.10	6.62	7.62
6.00	6 50	3/4	75	562	2.00	1.50	44	5 75	3 19	4.88	7 62	8.62

minus 062 (1.38-5.50 rods)

NA

ROD

PILOT EXT.

⊷W → -WF-

NA

в

Series 2H and 3L Hydraulic Cylinders

		T (THREAD)							
)*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Y	ZF	ZJ	PSI Rating†
	.44-20 .75-16	.50-20 .88-14	.44-20 .75-16	25 .50	.62 1.00	1 88 2.25	5.00 5.38	4 62 5.00	1800 1800
38 38	.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	25 .50 .62	.62 1.00 1 25	1.88 2.25 2.50	5.00 5.38 5.62	4 62 5.00 5.25	1500 1500 1500
38 38	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 50 .62 .75	.62 1.00 1.25 1.50	1.88 2.25 2.50 2.75	5.12 5.50 5.75 6.00	4.75 5.12 5.38 5.62	1000 1000 1000 1000
00 00	75-16 1.00-14 1 25-12 1 50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	6.25 6.50 6.75 6.88	5.62 5.88 6.12 6.25	1300 1300 1300 1300
00	.75-16 1.00-14 1.25-12 1 50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	6.25 6.50 6.75 6.88 7.12	5.62 5.88 6.12 6.25 6.50	900 900 900 900 900
00	.75-16 1 00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 50 .50 .62 62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.50 6.75 7.00 7.12 7.38 7.38 7.38	5.88 6.12 6.38 6.50 6.75 6.75 6.75	750 750 750 750 750 750 750 750
00 00 00	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.38 7 62 7.75 8.00 8.00 8.00 8.00	6.62 6.88 7.00 7.25 7.25 7.25 7.25 7.25	750 750 750 750 750 750 750 750

MF2

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND

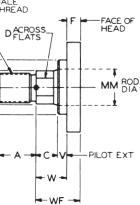
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly

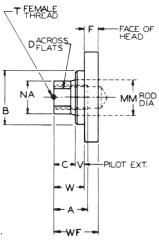
STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

RD

2.3


23

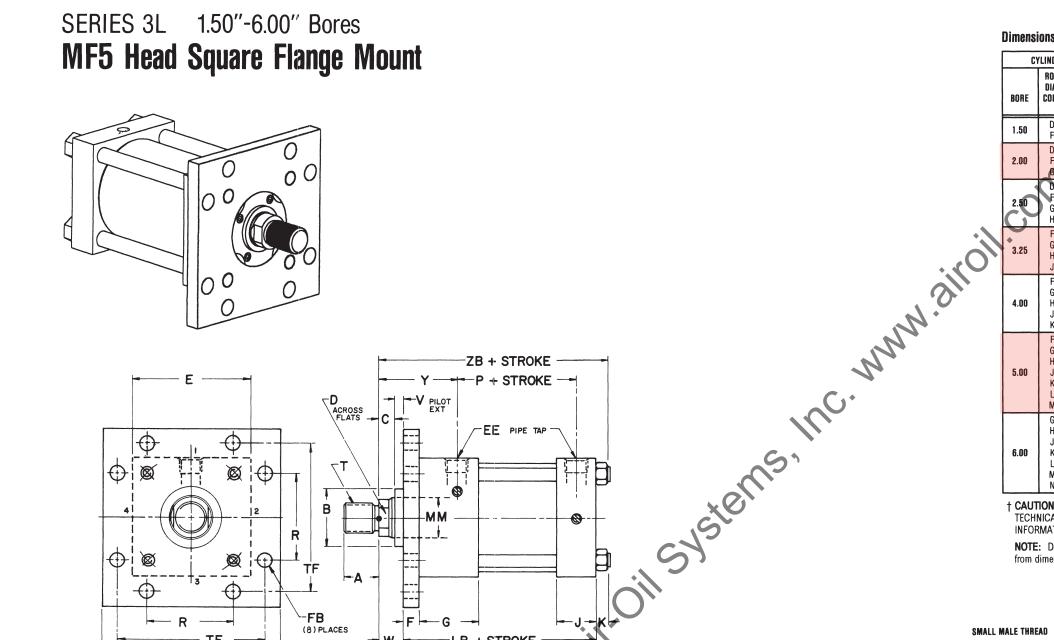
30


4.(

4.(

4.(

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

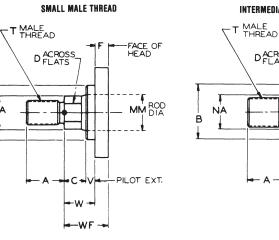


⊕

R

UF

TF



Dimens	ions al	re Atte	ctea d	y the K		meter									IΓJ
C' BORE	YLINDER Rod DIA. Code	MM Rod Dia.	A	B 001 003	C	D	SMALL Male SM	T (THREAD) INTER- MEDIATE MALE IM	SHORT Female Sf	v	w	WF	Y	ZB	PSI Rating1
1.50	D	.62	.75	1.125	.38	.50	.44-20	.50-20	.44-20	.25	.62	1.00	1.88	4.88	1800
	F	1.00	1.12	1.500	.50	.88	.75-16	.88-14	.75-16	.50	1.00	1.38	2.25	5.25	1800
2.00	D	.62	.75	1.125	.38	.50	.44-20	.50-20	.44-20	.25	.62	1.00	1.88	4.94	1800
	F	1.00	1.12	1.500	.50	.88	.75-16	.88-14	.75-16	.50	1.00	1.38	2.25	5.31	1800
	G	1.38	1.62	2.000	.62	1.12	1.00-14	1.25-12	1.00-14	.62	1.25	1.62	2.50	5.56	1800
2.50	D	.62	.75	1.125	.38	.50	.44-20	.50-20	.44-20	.25	.62	1.00	1.88	5.06	1000
	F	1.00	1.12	1.500	.50	.88	.75-16	.88-14	.75-16	.50	1.00	1.38	2.25	5.44	1000
	G	1.38	1.62	2.000	.62	1.12	1.00-14	1.25-12	1.00-14	.62	1.25	1.62	2.50	5.69	1000
	H	1.75	2.00	2.375	.75	1.50	1.25-12	1.50-12	1.25-12	.75	1.50	1.88	2.75	5.94	1000
3.25	F	1.00	1.12	1.500	.50	.88	.75-16	.88-14	.75-16	.25	.75	1.38	2.38	6.00	1300
	G	1.38	1.62	2.000	.62	1.12	1.00-14	1.25-12	1.00-14	.38	1.00	1.62	2.62	6.25	1300
	H	1.75	2.00	2.375	.75	1.50	1.25-12	1.50-12	1.25-12	.50	1.25	1.88	2.88	6.50	1300
	J	2.00	2.25	2.625	.88	1.69	1.50-12	1.75-12	1.50-12	.50	1.38	2.00	3.00	6.62	1300
4.00	F	1.00	1.12	1.500	.50	.88	.75-16	.88-14	.75-16	.25	.75	1.38	2.38	6.00	900
	G	1.38	1.62	2.000	.62	1.12	1.00-14	1.25-12	1.00-14	.38	1.00	1.62	2.62	6.25	900
	H	1.75	2.00	2.375	.75	1.50	1.25-12	1.50-12	1.25-12	.50	1.25	1.88	2.88	6.50	900
	J	2.00	2.25	2.625	.88	1.69	1.50-12	1.75-12	1.50-12	.50	1.38	2.00	3.00	6.62	900
	K	2.50	3.00	3.125	1.00	2.06	1.88-12	2.25-12	1.88-12	.62	1.62	2.25	3.25	6.88	900
5.00	F G H J K L M	1.00 1.38 1.75 2.00 2.50 3.00 3.50	1.12 1.62 2.00 2.25 3.00 3.50 3.50	1.500 2.000 2.375 2.625 3.125 3.750 4.250	.50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1.50 1.69 2.06 2.62 3.00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	1.38 1.62 1.88 2.00 2.25 2.25 2.25 2.25	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	750 750 750 750 750 550 550
6.00	G H J K L M N	1.38 1.75 2.00 2.50 3.00 3.50 4.00	1.62 2.00 2.25 3.00 3.50 3.50 4.00	2.000 2.375 2.625 3.125 3.750 4.250 4.750	.62 .75 .88 1.00 1.00 1.00 1.00	1.12 1.50 1.69 2.06 2.62 3.00 3.38	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	1.62 1.88 2.00 2.25 2.25 2.25 2.25 2.25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	750 750 750 750 750 600 600

† CAUTION : PSI ratings shown are **HANNA** recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

minus .062 (1.38-5.50 rods)

These Dimensions are Constant Regardless of Rod Diameter

TF

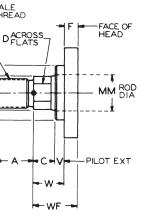
-FB

(8) PLACES

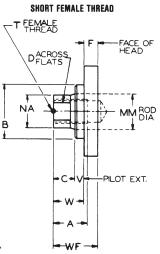
-F

- W

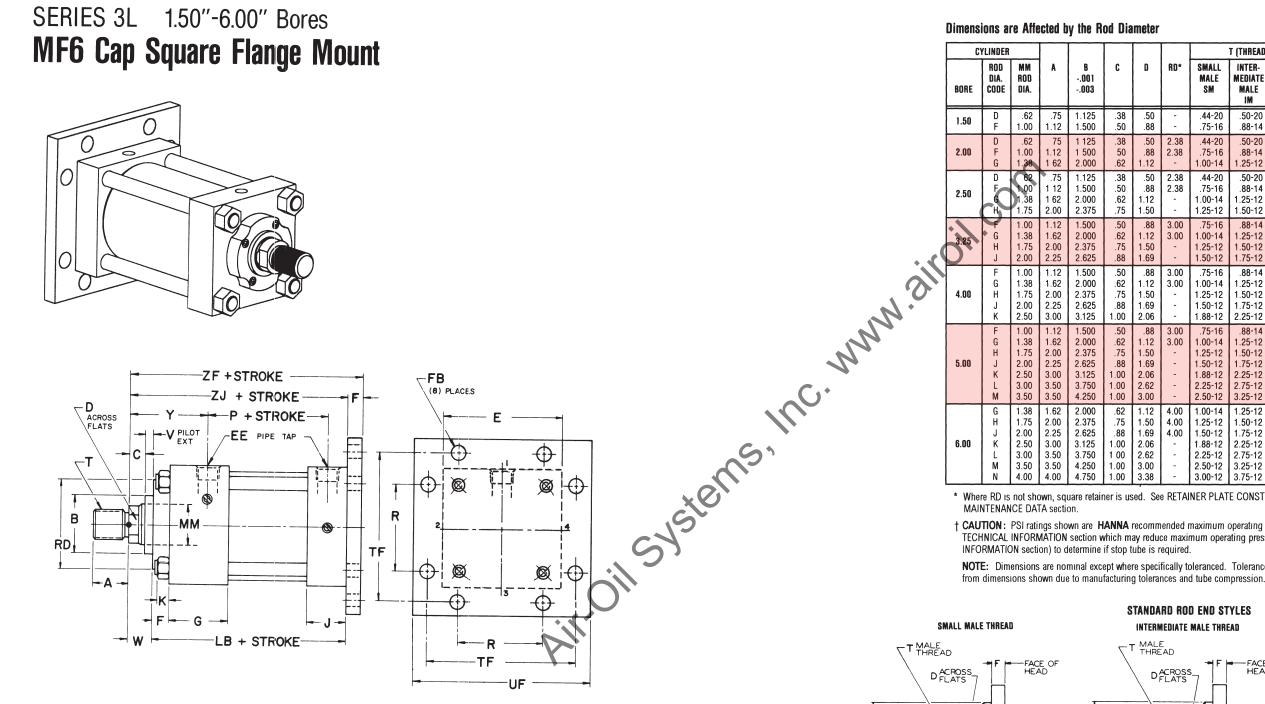
- G


LB + STROKE

		E	EE (NPTF)	F	FB	6	J	K	LB	P	R ±.010	TF ±.010	UF
L	ORE												
1	.50	2.00	3/8	.38	.312	1.50	1.00	.25	4.00	2.31	1.43	2 75	3.38
	2.00	2.50	3/8	.38	.375	1.50	1.00	.31	4.00	2.31	1.84	3 38	4.12
L	.50	3.00	3/8	.38	.375	1.50	1.00	.31	4.12	2.44	2 19	3.88	4.62
1 3	.25	3.75	1/2	.62	438	1.75	1.25	.38	4.88	2.69	2.76	4.69	5.50
	.00	4.50	1/2	.62	438	1.75	1.25	.38	4.88	2.69	3.32	5.44	6.25
	.00	5.50	1/2	62	.562	1.75	1.25	.44	5.12	2.94	4.10	6.62	7.62
L	i.00	6.50	3/4	75	562	2.00	1.50	.44	5.75	3.19	4 88	7.62	8.62


NA

B


Series 2H and 3L Hydraulic Cylinders

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

M	F5

These Dimensions are Constant Regardless of Rod Diameter

BORE	E	EE (NPTF)	F	FB	6	J	K	LB	P	R ±.010	TF ±.010	UF
1.50 2.00 2.50	2 00 2 50 3.00	3/8 3/8 3/8	38 38 38	312 .375 375	1.50 1.50 1.50	1 00 1 00 1 00	25 31 31	4 00 4.00 4.12	2 31 2.31 2.44	1.43 1.84 2 19	2.75 3 38 3 88	3.38 4.12 4 62
3.25 4.00 5.00 6.00	3 75 4 50 5.50 6 50	1/2 1/2 1/2 3/4	62 62 .62 75	.438 .438 .562 562	1 75 1 75 1 75 2.00	1 25 1 25 1 25 1 25 1 50	.38 .38 44 44	4.88 4 88 5 12 5 75	2.69 2 69 2 94 3.19	2 76 3 32 4.10 4.88	4 69 5 44 6.62 7 62	5.50 6.25 7 62 8 62

minus .062 (1.38-5.50 rods)

NA

MM ROD

PILOT EXT

C 0

.38 .50

.38 50 .62

.38 .50 .62 .75

.50 .62 .75

.88

.50 .62 .75 .88 1.00

.50 .62 .75

.88

1.00

1.00

1.00 3.00

.62 .75 .88

1.00

1 00

1.00

1.00

.50

.88

.50

.88

.12

.50

.88

1.12

1.50

88

1.12

1.50

.69

.88

1.12

1.50 1.69

2.06

.88

1.12

1.50

1.69

2.06

2.62

1.12 140

1.50 1.69

2.06

2.62

3.00

3.38

B

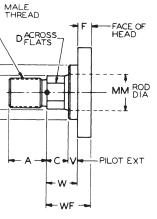
-w-

-WF

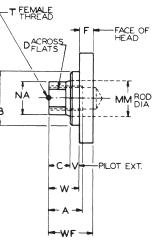
NA

Series 2H and 3L Hydraulic Cylinders

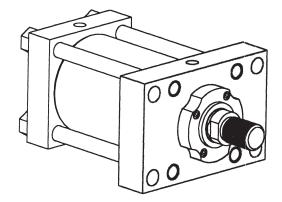
r									N	IF6
	RD*	SMALL MALE SM	T (THREAD) INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Y	ZF	ZJ	PSI Rating†
	-	.44-20 .75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	1.88 2.25	5.00 5.38	4.62 5.00	1800 1800
	2.38 2.38 -	.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 50 .62	.62 1.00 1.25	1.88 2.25 2.50	5.00 5.38 5.62	4.62 5.00 5.25	1800 1800 1800
	2.38 2.38 - -	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1 25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.88 2.25 2.50 2.75	5.12 5.50 5.75 6.00	4.75 5 12 5.38 5.62	1000 1400 1400 1400 1400
	3.00 3.00 - -	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	6.25 6.50 6.75 6.88	5.62 5.88 6.12 6.25	1300 1300 1300 1300
	3.00 3.00 - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	6.25 6.50 6.75 6.88 7.12	5.62 5.88 6 12 6.25 6.50	900 900 900 900 900
	3.00 3.00 - - - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1 25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.50 6.75 7.00 7.12 7.38 7.38 7.38	5.88 6.12 6.38 6.50 6.75 6.75 6.75	750 1000 1000 1000 1000 1000 1000
	4.00 4.00 4.00 - - - -	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.38 7.62 7.75 8.00 8.00 8.00 8.00	6.62 6.88 7.00 7.25 7.25 7.25 7.25 7.25	750 750 750 750 750 750 750 750

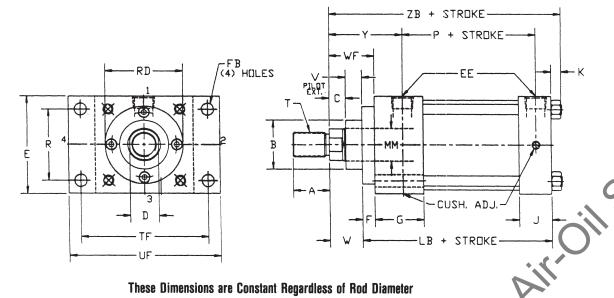

* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL


NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly

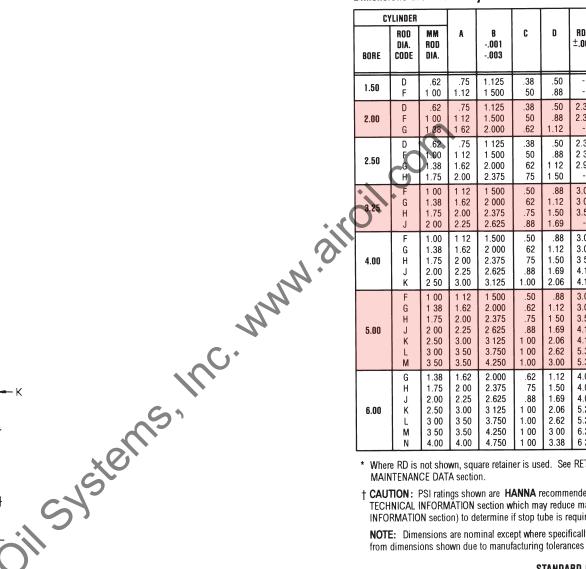
STANDARD ROD END STYLES


INTERMEDIATE MALE THREAD



NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

SERIES 3L 1.50"-6.00" Bores **ME5 Head Flange Mount**

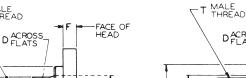


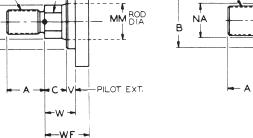
These Dimensions are Constant Regardless of Rod Diameter

BORE	E	EE (NPTF)	F	FB	6	J	K	LB	P	R ±.010	TF ±.010	UF
1.50	2.00	3/8	.38	.312	1.50	1.00	.25	4.00	2.31	1.43	2.75	3.38
2.00	2.50	3/8	.38	.375	1.50	1.00	.31	4.00	2.31	1.84	3.38	4.12
2.50	3.00	3/8	.38	.375	1.50	1.00	.31	4.12	2.44	2.19	3.88	4.62
3.25	3.75	1/2	.62	.438	1.75	1.25	.38	4.88	2.69	2.76	4.69	5.50
4.00	4.50	1/2	.62	.438	1.75	1.25	.38	4.88	2.69	3.32	5.44	6.25
5.00	5.50	1/2	.62	.562	1.75	1.25	.44	5.12	2.94	4.10	6.62	7.62
6.00	6.50	3/4	.75	.562	2.00	1.50	.44	5.75	3.19	4.88	7.62	8.62

Dimensions are Affected by the Rod Diameter

MAINTENANCE DATA section.


† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

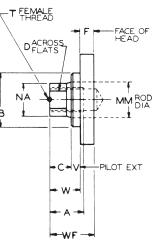

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

T MALE

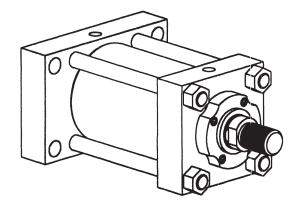
NA

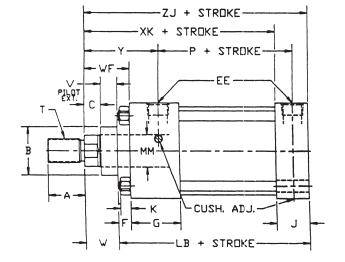

minus .062 (1 38-5 50 rods)

Series 2H and 3L Hydraulic Cylinders


								M	E 5
D* D05	SMALL MALE SM	T (THREAD) INTER- Mediate Male IM	SHORT Female SF	V	w	WF	Y	ZB	PSI Rating†
-	.44-20 .75-16	50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	1.00 1.38	1 88 2.25	4.88 5.25	1800 1800
.38 .38 -	.44-20 .75-16 1 00-14	.50-20 .88-14 1 25-12	.44-20 .75-16 1.00-14	.25 .50 62	62 1.00 1.25	1.00 1.38 1.62	1.88 2.25 2.50	4.94 5.31 5.56	1800 1800 1800
.38 38 .94 -	.44-20 .75-16 1 00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 75-16 1.00-14 1.25-12	.25 50 .62 .75	.62 1 00 1.25 1.50	1.00 1 38 1 62 1.88	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	1000 1400 1400 1400
.00 00 .50	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.38 1.62 1.88 2.00	2.38 2.62 2 88 3.00	6.00 6.25 6.50 6.62	1300 1300 1300 1300 1300
.00 .00 50 .12 .12	75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 50 .62	75 1.00 1.25 1.38 1.62	1.38 1.62 1.88 2.00 2.25	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	900 900 900 900 900
.00 .00 .50 .12 .12 .38 .38	75-16 1.00-14 1.25-12 1.50-12 1.88-12 2 25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	25 .38 50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62 1.62	1 38 1.62 1 88 2.00 2.25 2.25 2.25 2.25	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	750 1000 1000 1000 1000 1000 1000
.00 .00 .25 .25 .25 .25	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1 12 1.25 1.50 1.50 1.50 1.50	1.62 1.88 2.00 2.25 2.25 2.25 2.25 2.25	2.75 3 00 3.12 3.38 3.38 3.38 3.38 3 38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	750 750 750 750 750 750 750 750

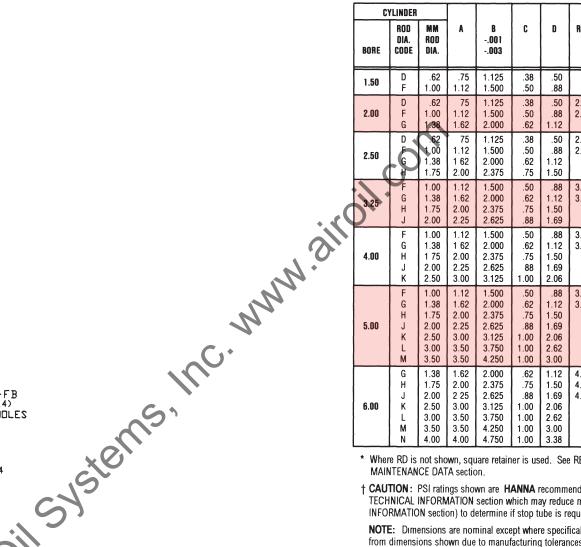
Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD



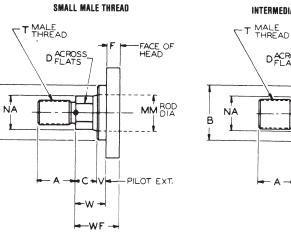
NOTE: Dimension "NA" is the rod diameter minus 030 (.62 & 1.00 rods),

SERIES 3L 1.50"-6.00" Bores **ME6 Cap Flange Mount**



These Dimensions are Constant Regardless of Rod Diameter

	E	EE (NPTF)	F	FB	6	J	K	LB	P	R ±.010	TF ±.010	UF
BORE												
1.50	2.00	3/8	.38	.312	1.50	1.00	.25	4.00	2.31	1.43	2.75	3.38
2.00	2.50	3/8	.38	.375	1.50	1.00	.31	4.00	2.31	1.84	3.38	4.12
2.50	3.00	3/8	.38	.375	1.50	1.00	.31	4.12	2.44	2.19	3.88	4.62
3.25	3.75	1/2	.62	.438	1.75	1.25	.38	4.88	2.69	2.76	4.69	5.50
4.00	4.50	1/2	.62	.438	1.75	1.25	.38	4.88	2.69	3.32	5.44	6.25
5.00	5.50	1/2	.62	562	1.75	1.25	.44	5.12	2.94	4.10	6.62	7.62
6.00	6 50	3/4	.75	.562	2.00	1.50	.44	5.75	3.19	4.88	7.62	8.62



* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

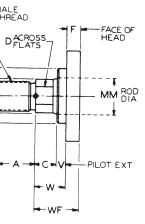
minus 062 (1 38-5.50 rods)

FB (4) HOLES

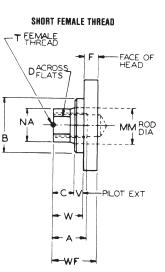
ᠿ

Ø

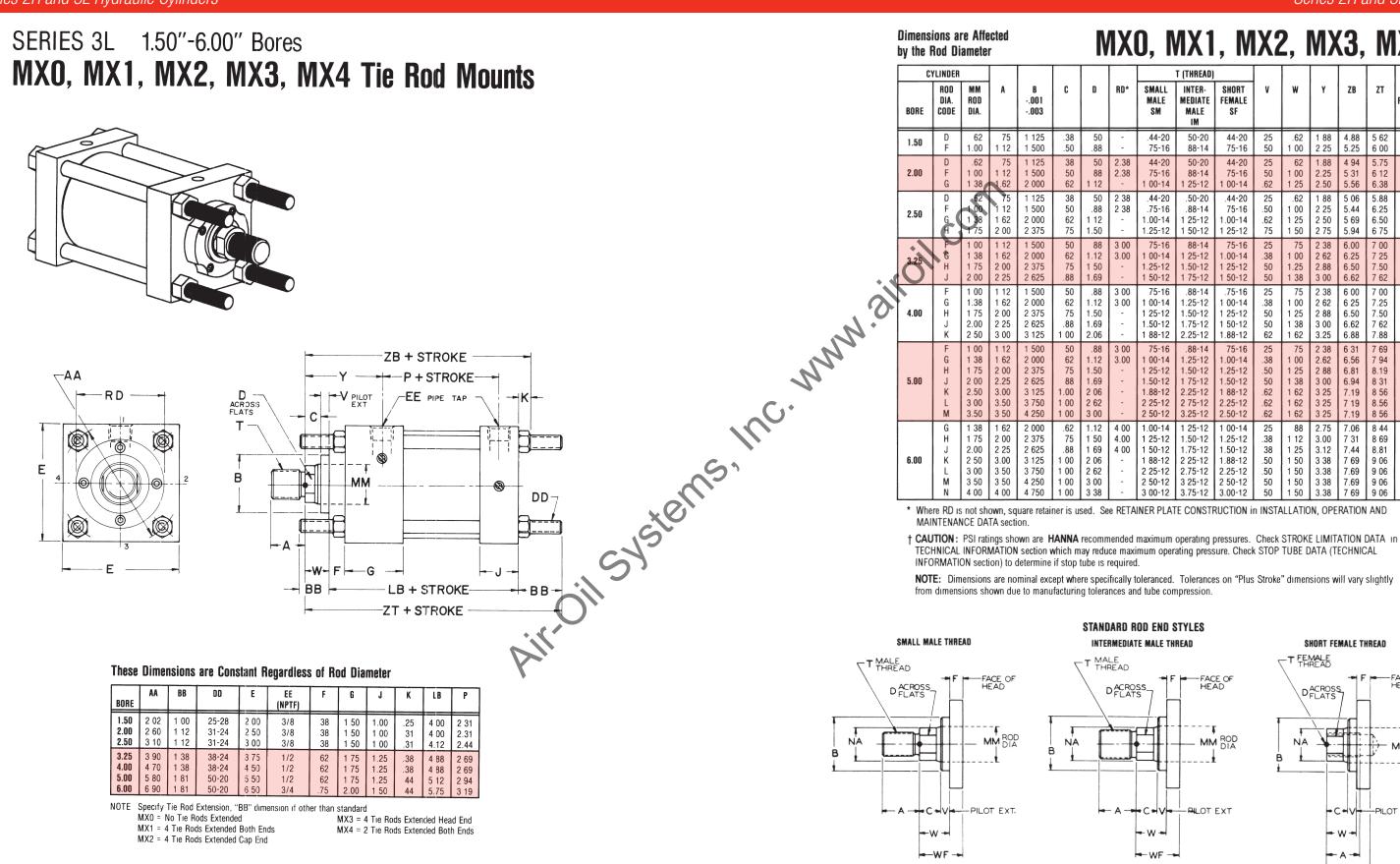
D


Ð X

Series 2H and 3L Hydraulic Cylinders

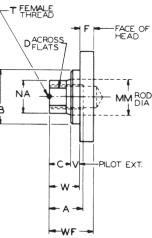

									LU
		T (THREAD)							
RD*	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Ŷ	ХК	ZJ	PSI RATING†
-	.44-20 .75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	1.88 2.25	3.62 4.00	4.62 5.00	1800 1800
2.38 2.38 -	.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.88 2.25 2.50	3.62 4.00 4.25	4.62 5.00 5.25	1800 1800 1800
2.38 2.38 - -	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.88 2.25 2.50 2.75	3.75 4.12 4.38 4.62	4.75 5.12 5.38 5.62	1000 1400 1400 1400
3.00 3.00 - -	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	4.38 4.62 4.88 5.00	5.62 5.88 6.12 6.25	1300 1300 1300 1300 1300
3.00 3.00 - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	4.38 4.62 4.88 5.00 5.25	5.62 5.88 6.12 6.25 6.50	900 900 900 900 900
3.00 3.00 - - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 50 .50 .62 .62 .62	75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	4.62 4.88 6.12 5.25 5.50 5.50 5.50	5.88 6.12 6.38 6.50 6.75 6.75 6.75	750 1000 1000 1000 1000 1000 1000
4.00 4.00 4.00 - - -	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1 75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	5.12 5.38 5 50 5.75 5.75 5.75 5.75 5.75	6.62 6.88 7.00 7.25 7.25 7.25 7.25 7.25	750 750 750 750 750 750 750 750

STANDARD ROD END STYLES

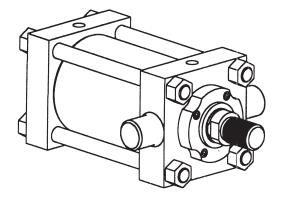

INTERMEDIATE MALE THREAD

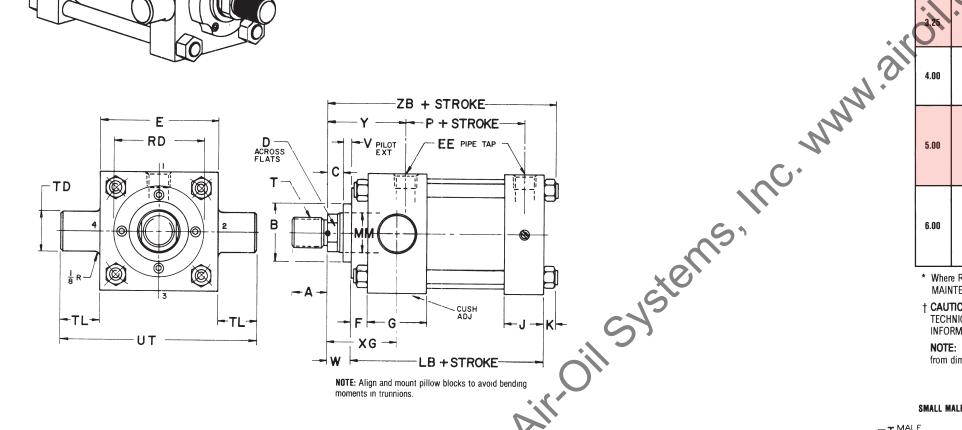
NOTE: Dimension "NA" is the rod diameter minus .030 (62 & 1.00 rods).

|--|



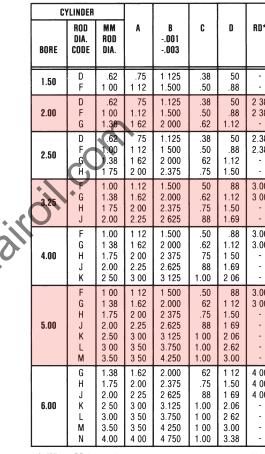
Series 2H and 3L Hydraulic Cylinders


MXO, MX1, MX2, MX3, MX4


	T (THREAD)								
	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	V	w	Y	ZB	ZT	PSI Rating†
	.44-20 75-16	50-20 88-14	44-20 75-16	25 50	.62 1 00	1 88 2 25	4.88 5.25	5 62 6 00	1800 1800
}	44-20 75-16 1 00-14	50-20 88-14 1 25-12	44-20 75-16 1 00-14	25 50 .62	62 1 00 1 25	1.88 2.25 2.50	4 94 5 31 5.56	5.75 6 12 6.38	1800 1800 1800
5	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1 25-12 1 50-12	.44-20 75-16 1.00-14 1 25-12	25 .50 .62 75	.62 1 00 1 25 1 50	1 88 2 25 2 50 2 75	5 06 5.44 5 69 5.94	5.88 6.25 6.50 6 75	1000 1400 1400 1400
)	75-16 1 00-14 1.25-12 1 50-12	88-14 1 25-12 1.50-12 1 75-12	75-16 1.00-14 1 25-12 1 50-12	25 .38 50 50	75 1 00 1.25 1 38	2 38 2 62 2.88 3 00	6.00 6.25 6.50 6.62	7 00 7 25 7.50 7 62	1300 1300 1300 1300 1300
)	75-16 1 00-14 1 25-12 1.50-12 1 88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1 00-14 1 25-12 1 50-12 1.88-12	25 .38 50 50 62	75 1 00 1 25 1 38 1 62	2 38 2 62 2 88 3 00 3.25	6 00 6 25 6.50 6.62 6.88	7 00 7.25 7.50 7 62 7.88	900 900 900 900 900
	75-16 1 00-14 1 25-12 1.50-12 1.88-12 2 25-12 2 50-12	.88-14 1.25-12 1.50-12 1 75-12 2.25-12 2 75-12 3.25-12	75-16 1.00-14 1.25-12 1.50-12 1 88-12 2.25-12 2.50-12	25 .38 .50 .62 .62 .62	75 1 00 1 25 1 38 1 62 1 62 1 62	2 38 2.62 2 88 3 00 3 25 3 25 3 25 3 25	6 31 6.56 6.81 6.94 7.19 7 19 7.19	7 69 7 94 8.19 8 31 8 56 8.56 8 56	750 1000 1000 1000 1000 1000 1000
	1.00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	1 25-12 1.50-12 1.75-12 2 25-12 2.75-12 3 25-12 3.75-12	1 00-14 1.25-12 1.50-12 1.88-12 2.25-12 2 50-12 3.00-12	25 .38 .50 .50 50 50	88 1 12 1 25 1 50 1 50 1 50 1 50 1 50	2.75 3.00 3.12 3 38 3.38 3.38 3.38 3.38	7.06 7 31 7.44 7 69 7.69 7.69 7.69 7 69	8 44 8 69 8.81 9 06 9 06 9 06 9 06	750 750 750 750 750 750 750 750

NOTE: Dimension "NA" is the rod diameter minus 030 (.62 & 1.00 rods),

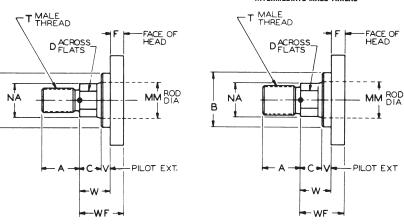
SERIES 3L 1.50"-6.00" Bores MT1 Head Trunnion Mount



These Dimensions are Constant Regardless of Rod Diameter

BORE	E	EE (NPTF)	F	6	J	ĸ	LB	P	TD +.000 002	TL	UT
1.50	2.00	3/8	.38	1.50	1.00	25	4.00	2.31	1.000	1.00	4.00
2.00	2.50	3/8	.38	1.50	1.00	.31	4.00	2.31	1.000	1.00	4.50
2.50	3.00	3/8	.38	1.50	1.00	.31	4.12	2.44	1.000	1.00	5.00
3.25	3.75	1/2	.62	1.75	1.25	38	4.88	2.69	1.000	1.00	5.75
4.00	4.50	1/2	.62	1.75	1.25	38	4 88	2 69	1.000	1.00	6.50
5.00	5.50	1/2	.62	1 75	1.25	.44	5 12	2.94	1.000	1.00	7.50
6.00	6 50	3/4	75	2.00	1.50	.44	5.75	3.19	1.375	1.38	9.25

Dimensions are Affected by the Rod Diameter



* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND MAINTENANCE DATA section.

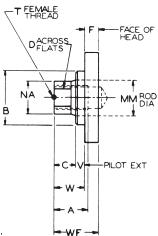
† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

SMALL MALE THREAD

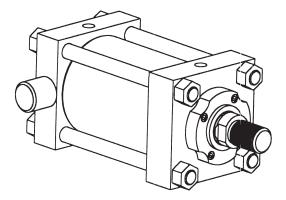
NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods), minus .062 (1 38-5.50 rods)

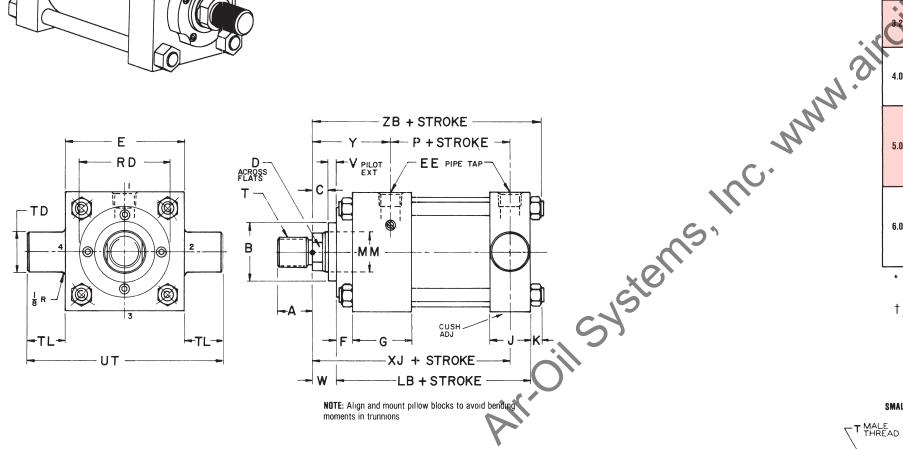
Series 2H and 3L Hydraulic Cylinders


		T (THREAD)							
0*	SMALL Male Sm	INTER- MEDIATE Male IM	SHORT Female Sf	v	w	XG	Ŷ	ZB	PSI Rating†
-	44-20 .75-16	50-20 .88-14	.44-20 75-16	.25 50	.62 1 00	1 75 2.12	1.88 2.25	4.88 5.25	1800 1800
38 38 -	.44-20 .75-16 1.00-14	.50-20 88-14 1.25-12	.44-20 75-16 1.00-14	.25 .50 62	.62 1.00 1 25	1 75 2.12 2.38	1.88 2.25 2.50	4.94 5 31 5.56	1800 1800 1800
38 38 -	44-20 .75-16 1.00-14 1 25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 75-16 1 00-14 1.25-12	.25 50 .62 .75	.62 1 00 1 25 1.50	1.75 2 12 2 38 2.62	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	1000 1400 1400 1400
00 00 -	.75-16 1 00-14 1 25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 50	75 1.00 1.25 1.38	2 25 2 50 2.75 2.88	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	1300 1300 1300 1300 1300
00 00 - -	.75-16 1.00-14 1.25-12 1.50-12 1 88-12	88-14 1.25-12 1.50-12 1.75-12 2 25-12	75-16 1 00-14 1.25-12 1.50-12 1 88-12	.25 .38 50 .50 .62	.75 1 00 1 25 1.38 1.62	2.25 2.50 2.75 2 88 3.12	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	900 900 900 900 900
00 00 - - -	.75-16 1.00-14 1.25-12 1 50-12 1.88-12 2.25-12 2.50-12	.88-14 1 25-12 1.50-12 1 75-12 2.25-12 2.75-12 3.25-12	75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	25 .38 50 .50 .62 .62 .62	.75 1.00 1 25 1.38 1.62 1 62 1 62	2.25 2 50 2 75 2.88 3 12 3 12 3 12 3 12	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6 56 6.81 6 94 7 19 7 19 7 19 7 19	750 1000 1000 1000 1000 1000 1000
00 00 00 - -	1 00-14 1 25-12 1.50-12 1 88-12 2 25-12 2.50-12	1 25-12 1 50-12 1 75-12 2 25-12 2 75-12 3.25-12	1 00-14 1 25-12 1.50-12 1 88-12 2.25-12 2.50-12	.25 .38 .38 .50 50 .50	.88 1 12 1.25 1 50 1.50 1 50	2.62 2.88 3 00 3.25 3.25 3 25	2.75 3 00 3.12 3.38 3.38 3 38	7 06 7 31 7 44 7.69 7.69 7.69	750 750 750 750 750 750 750
-	3.00-12	3.75-12	3 00-12	.50	1 50	3.25	3.38	7.69	750

MT1

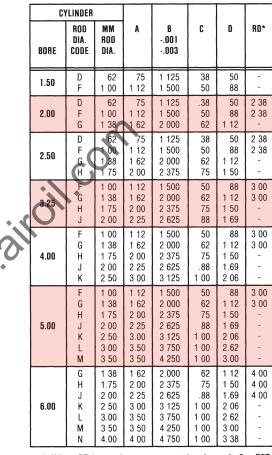
STANDARD ROD END STYLES


INTERMEDIATE MALE THREAD


SHORT FEMALE THREAD

Series 2H and 3L Hydraulic Cylinders

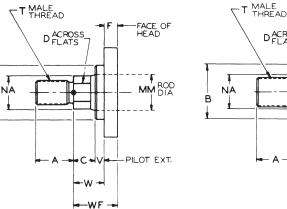
SERIES 3L 1.50"-6.00" Bores **MT2 Cap Trunnion Mount**



These Dimensions are Constant Regardless of Rod Diameter

BORE	E	EE (NPTF)	F	6	J	К	LB	P	TD +.000 002	TL	UT
1.50	2.00	3/8	38	1.50	1.00	25	4 00	2.31	1.000	1 00	4.00
2.00	2.50	3/8	.38	1.50	1.00	31	4.00	2.31	1.000	1.00	4.50
2.50	3 00	3/8	38	1 50	1 00	31	4 12	2.44	1.000	1.00	5.00
3.25	3 75	1/2	62	1 75	1 25	38	4 88	2 69	1.000	1.00	5.75
4.00	4.50	1/2	62	1 75	1 25	38	4 88	2 69	1.000	1.00	6.50
5.00	5 50	1/2	62	1 75	1 25	44	5 12	2 94	1.000	1.00	7.50
6.00	6 50	3/4	75	2.00	1.50	44	5 75	3 19	1.375	1 38	9.25

Dimensions are Affected by the Rod Diameter

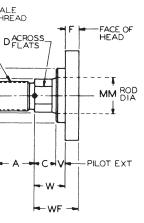

MAINTENANCE DATA section.

† CAUTION: PSI ratings shown are **HANNA** recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL INFORMATION section) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

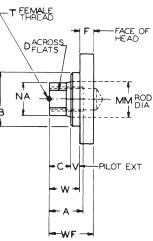
SMALL MALE THREAD

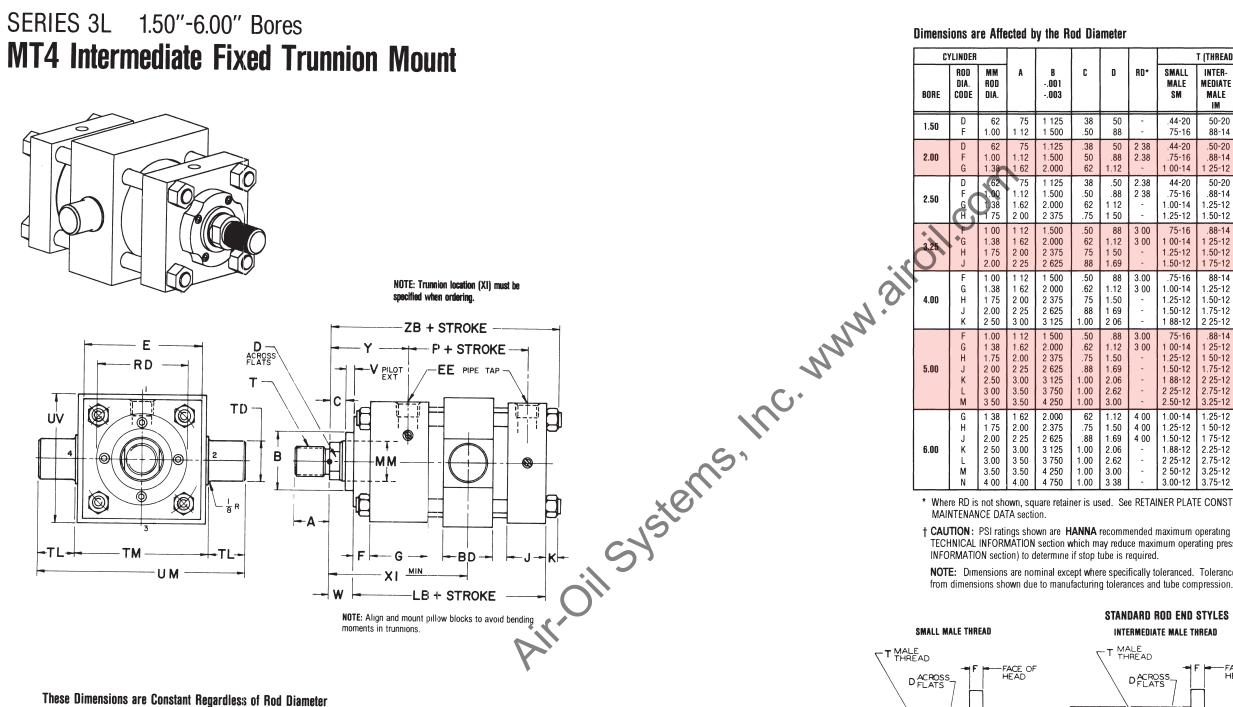
minus 062 (1 38-5 50 rods)


Series 2H and 3L Hydraulic Cylinders

		T (THREAD)							
	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female SF	V	w	XJ	Y	ZB	PSI Rating†
	44-20 75-16	50-20 88-14	44-20 75-16	25 50	62 1 00	4 12 4 50	1.88 2 25	4 88 5 25	1800 1800
3	44-20 75-16 1.00-14	50-20 88-14 1 25-12	44-20 75-16 1 00-14	25 50 62	.62 1 00 1 25	4 12 4 50 4 75	1.88 2 25 2.50	4.94 5 31 5 56	1800 1800 1800
3	44-20 75-16 1 00-14 1 25-12	50-20 88-14 1 25-12 1 50-12	44-20 75-16 1 00-14 1.25-12	25 50 .62 75	62 1 00 1 25 1 50	4 25 4 62 4 88 5 12	1.88 2.25 2 50 2.75	5.06 5 44 5 69 5.94	1000 1400 1400 1400
))	75-16 1 00-14 1 25-12 1 50-12	88-14 1 25-12 1 50-12 1 75-12	75-16 1 00-14 1 25-12 1 50-12	25 38 50 50	75 1 00 1 25 1 38	5 00 5.25 5.50 5 62	2 38 2.62 2 88 3 00	6 00 6 25 6 50 6.62	1300 1300 1300 1300 1300
)	75-16 1.00-14 1 25-12 1 50-12 1 88-12	88-14 1.25-12 1 50-12 1 75-12 2 25-12	.75-16 1 00-14 1 25-12 1 50-12 1 88-12	25 38 50 50 62	75 1 00 1 25 1 38 1 62	5 00 5.25 5 50 5 62 5 88	2 38 2 62 2.88 3 00 3.25	6 00 6 25 6 50 6 62 6.88	900 900 900 900 900
))	.75-16 1.00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12	88-14 1 25-12 1.50-12 1 75-12 2.25-12 2.75-12 3.25-12	75-16 1 00-14 1 25-12 1.50-12 1.88-12 2.25-12 2 50-12	.25 38 50 50 62 62 62 62	75 1 00 1 25 1 38 1 62 1 62 1 62	5 25 5 50 5 75 5 88 6 12 6 12 6 12	2 38 2 62 2.88 3 00 3.25 3.25 3.25 3.25	6 31 6 56 6 81 6 94 7 19 7 19 7 19 7 19	750 1000 1000 1000 1000 1000 1000
)))	1.00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	1 25-12 1 50-12 1 75-12 2 25-12 2.75-12 3.25-12 3.75-12	1 00-14 1.25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	25 38 38 50 50 50 50	88 1 12 1 25 1 50 1 50 1 50 1 50 1 50	5.88 6 12 6 25 6 50 6 50 6 50 6 50 6 50	2.75 3.00 3 12 3.38 3.38 3.38 3 38 3 38	7 06 7 31 7 44 7 69 7 69 7 69 7 69 7 69	750 750 750 750 750 750 750 750

MT2


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND


STANDARD ROD END STYLES INTERMEDIATE MALE THREAD

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods)

SHORT FEMALE THREAD

BORE	BD	BZ Min. Stroke	E	EE (NPTF)	F	G	J	K	LB	Р	TD +.000 002	TL	TM	UM	UV
1.50	1.25	12	2.00	3/8	.38	1.50	1.00	25	4 00	2.31	1.000	1 00	2.50	4 50	2 50
2.00	1.50	38	2 50	3/8	.38	1 50	1.00	.31	4.00	2.31	1.000	1.00	3.00	5 00	3.00
2.50	1.50	25	3.00	3/8	38	1.50	1.00	31	4 12	2.44	1 000	1 00	3.50	5.50	3.50
3.25	2 00	75	3.75	1/2	.62	1 75	1 25	38	4 88	2.69	1.000	1 00	4.50	6.50	4.25
4.00	2.00	75	4.50	1/2	62	1 75	1.25	38	4.88	2.69	1.000	1 00	5.25	7.25	5.00
5.00	2.00	50	5 50	1/2	62	1 75	1 25	44	5.12	2.94	1.000	1.00	6.25	8.25	6 00
6.00	2.00	1 00	6 50	3/4	75	2 00	1 50	44	5 75	3 19	1.375	1.38	7.62	10 38	

minus 062 (1.38-5.50 rods)

NA

MM ROD

PILOT FXT

•C+V

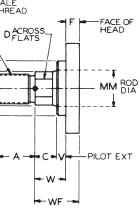
-w --WF

NA

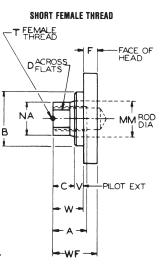
Series 2H and 3L Hydraulic Cylinders

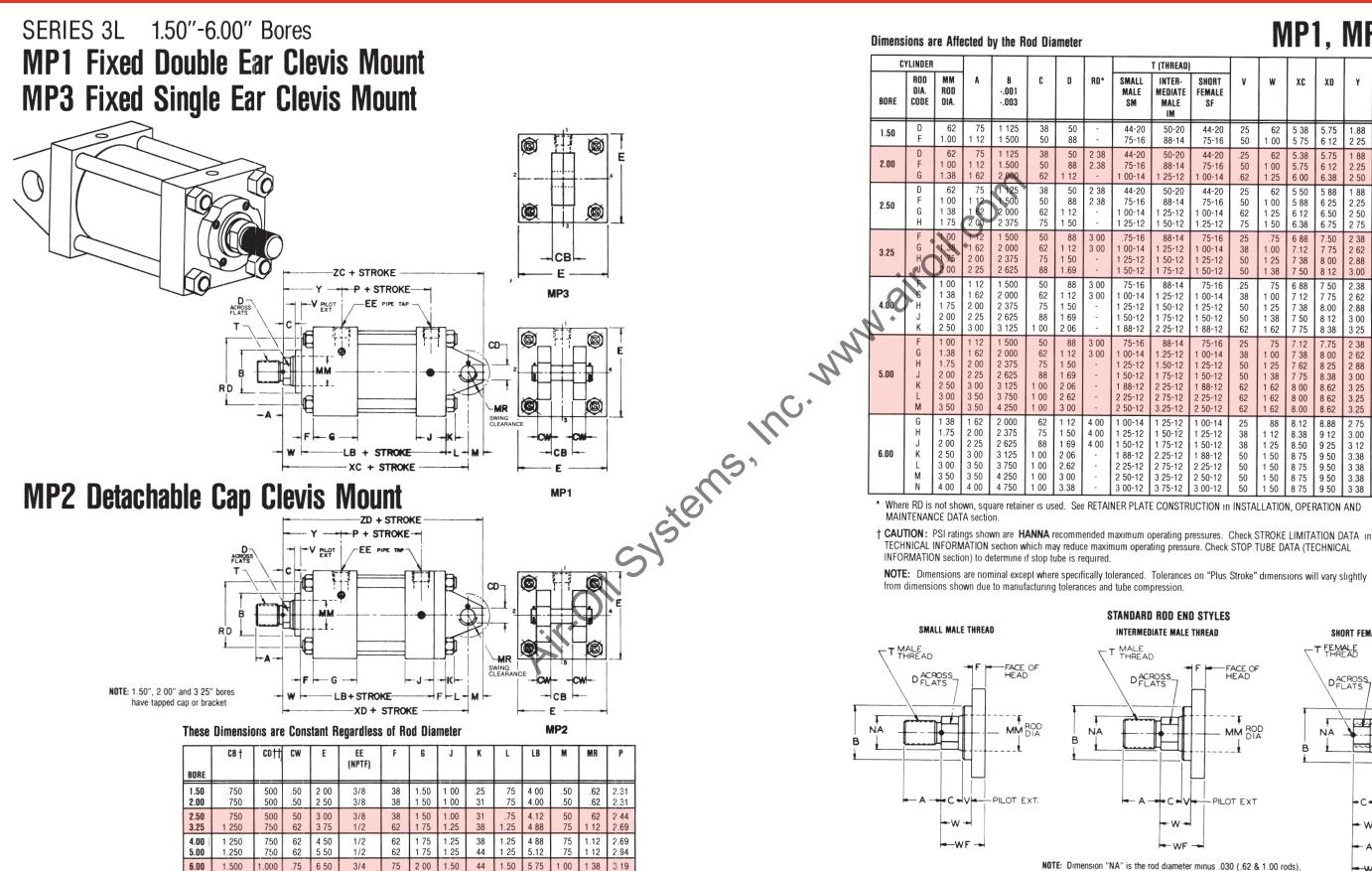
		T (THREAD)							
*	SMALL MALE SM	INTER- MEDIATE Male IM	SHORT Female Sf	V	W	XI (MIN)	Y	ZB	PSI Rating†
	.44-20 75-16	50-20 88-14	44-20 75-16	.25 50	62 1.00	3 12 3 50	1.88 2.25	4.88 5.25	1800 1800
8	.44-20 .75-16 1 00-14	.50-20 .88-14 1 25-12	.44-20 .75-16 1.00-14	.25 50 62	.62 1 00 1 25	3.25 3 62 3.88	1.88 2 25 2 50	4.94 5 31 5 56	1800 1800 1800
8	44-20 .75-16 1.00-14 1.25-12	50-20 .88-14 1.25-12 1.50-12	44-20 75-16 1.00-14 1.25-12	25 .50 .62 75	62 1 00 1.25 1.50	3.25 3 62 3.88 4.12	1.88 2 25 2 50 2.75	5.06 5.44 5.69 5.94	1000 1400 1400 1400
0	75-16 1 00-14 1.25-12 1.50-12	.88-14 1 25-12 1.50-12 1 75-12	75-16 1 00-14 1.25-12 1.50-12	25 38 50 .50	75 1.00 1 25 1 38	4 12 4 38 4.62 4 75	2.38 2.62 2.88 3.00	6.00 6.25 6 50 6.62	1300 1300 1300 1300 1300
0	.75-16 1.00-14 1.25-12 1.50-12 1 88-12	88-14 1.25-12 1.50-12 1.75-12 2 25-12	75-16 1.00-14 1.25-12 1 50-12 1 88-12	.25 38 .50 50 62	.75 1 00 1.25 1.38 1 62	4 12 4.38 4 62 4.75 5 00	2.38 2.62 2.88 3 00 3.25	6 00 6.25 6.50 6 62 6.88	900 900 900 900 900
0	75-16 1 00-14 1.25-12 1.50-12 1 88-12 2 25-12 2.50-12	.88-14 1 25-12 1 50-12 1.75-12 2 25-12 2.75-12 3.25-12	75-16 1.00-14 1 25-12 1 50-12 1.88-12 2 25-12 2.50-12	.25 .38 .50 .62 .62 .62	75 1 00 1.25 1 38 1 62 1 62 1.62	4 12 4 38 4 62 4 75 5 00 5 00 5 00	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	6.31 6.56 6.81 6 94 7 19 7.19 7.19	750 1000 1000 1000 1000 1000 1000
000	1.00-14 1.25-12 1.50-12 1.88-12 2 25-12 2 50-12 3.00-12	1.25-12 1 50-12 1 75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	25 .38 .38 50 .50 .50	.88 1 12 1 25 1.50 1 50 1.50 1 50	4.88 5.12 5.25 5.50 5.50 5.50 5.50	2.75 3 00 3.12 3 38 3.38 3.38 3.38 3 38	7.06 7 31 7 44 7 69 7.69 7.69 7 69	750 750 750 750 750 750 750 750

MT4


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION in INSTALLATION, OPERATION AND

† CAUTION: PSI ratings shown are **HANNA** recommended maximum operating pressures. Check STROKE LIMITATION DATA in TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL

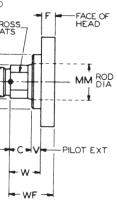

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly


STANDARD ROD END STYLES

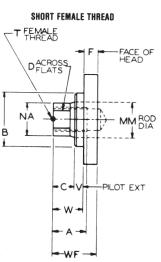
INTERMEDIATE MALE THREAD

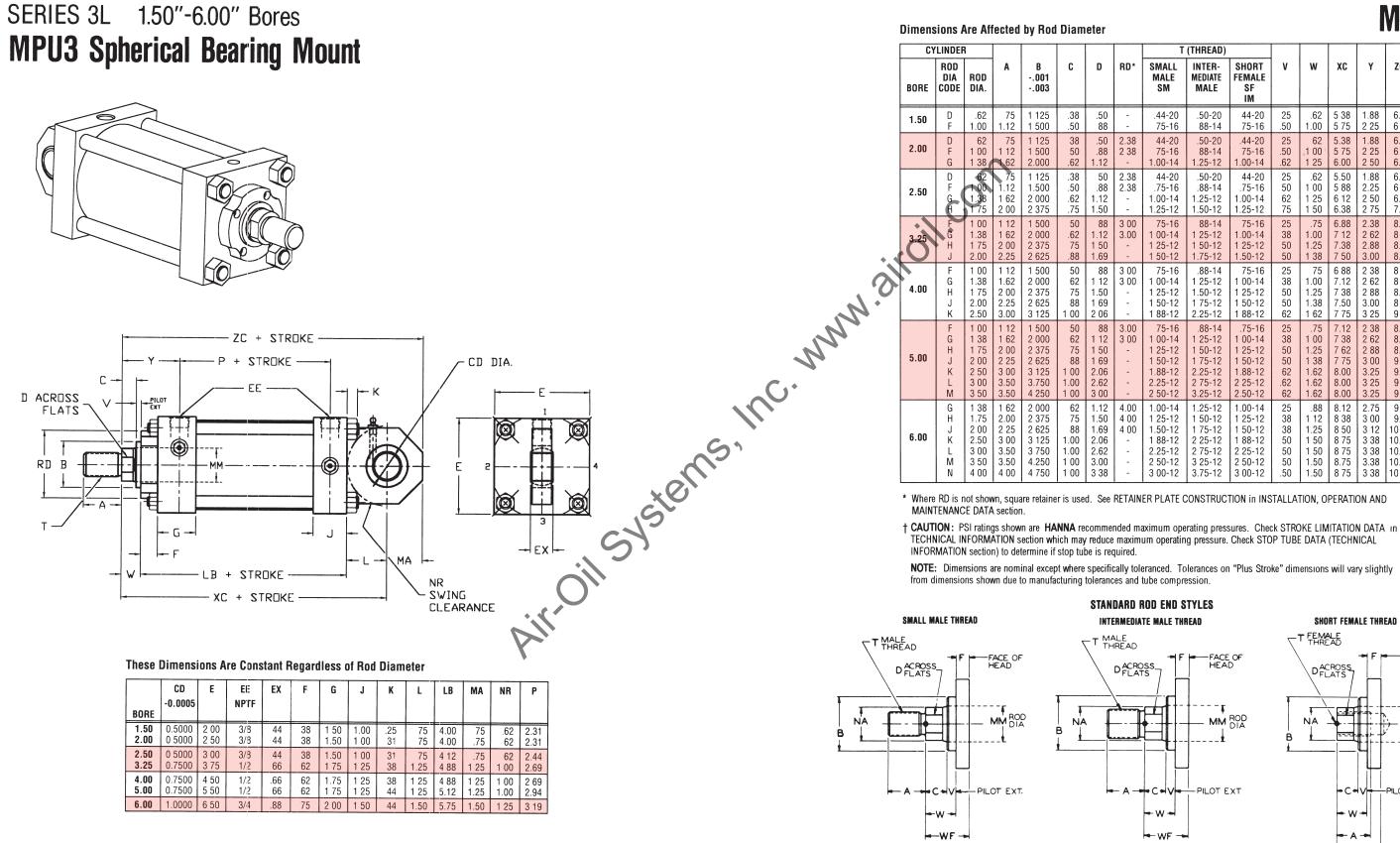
NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

+CB tolerances are +.016, +.047 for MP1 and MP2; and ± 005 for MP3. ++CD tolerances are +.003, +.005 for MP3. NOTE: Pivot pin supplied with MP1 and MP2 cylinders; Pivot pin not supplied with MP3 cylinder.


Series 2H and 3L Hydraulic Cylinders

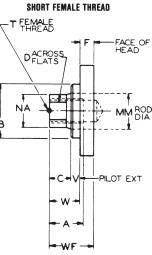
MP1, MP2, MP3

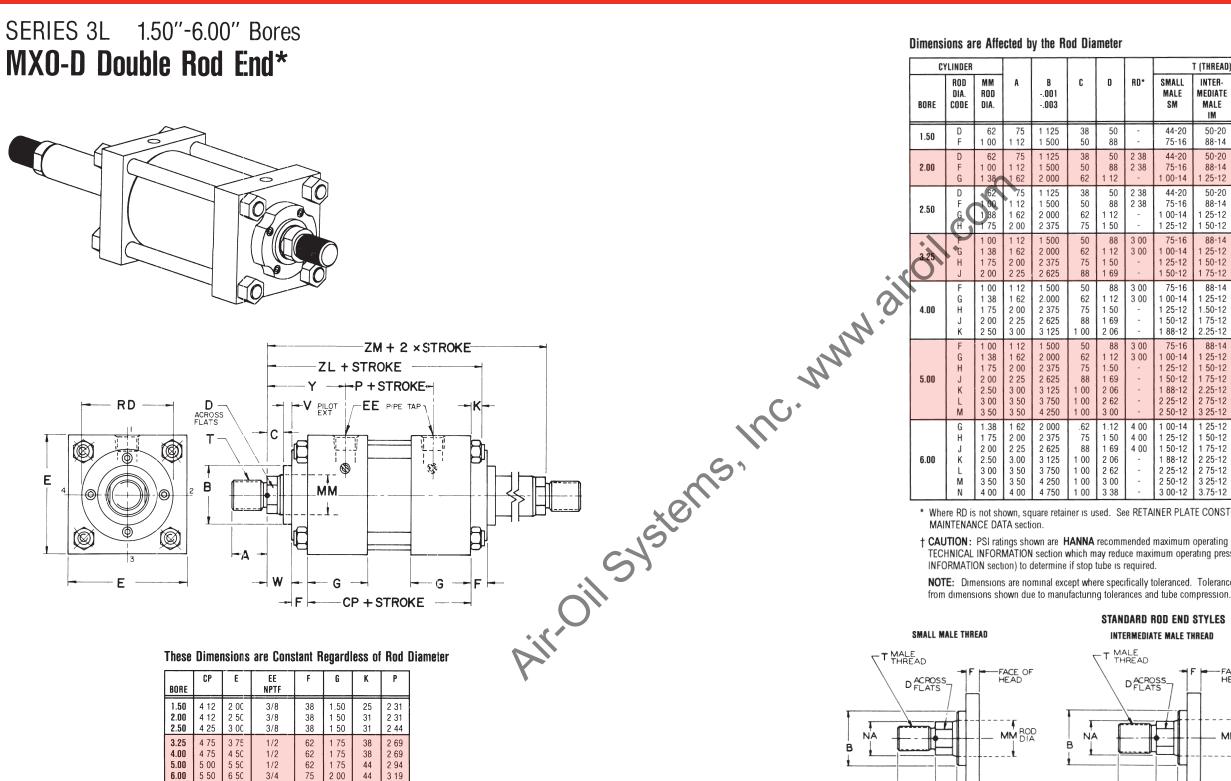

T (THREAD)	· · · · · · · · · · · · · · · · · · ·								
INTER- MEDIATE MALE IM	SHORT Female Sf	v	w	XC	XD	Ŷ	ZC	ZD	PSI Rating†
50-20	44-20	25	62	5 38	5.75	1.88	5.88	6 25	1800
88-14	75-16	50	1 00	5 75	6 12	2 25	6.25	6 62	1800
50-20	44-20	.25	62	5.38	5.75	1 88	5 88	6 25	1800
.88-14	75-16	50	1 00	5.75	6 12	2.25	6 25	6.62	1800
1 25-12	1 00-14	.62	1 25	6 00	6.38	2 50	6.50	6 88	1800
50-20	44-20	25	62	5 50	5 88	1 88	6 00	6 38	1000
88-14	75-16	50	1 00	5 88	6 25	2.25	6 38	6 75	1400
1 25-12	1 00-14	62	1 25	6 12	6.50	2 50	6.62	7 00	1400
1 50-12	1.25-12	75	1 50	6.38	6.75	2 75	6.88	7 25	1400
88-14	75-16	25	.75	6 88	7.50	2 38	7.62	8.25	1300
1 25-12	1 00-14	38	1.00	7.12	7 75	2 62	7 88	8.50	1300
1 50-12	1 25-12	50	1 25	7 38	8 00	2.88	8.12	8 75	1300
1 75-12	1 50-12	50	1 38	7 50	8 12	3.00	8 25	8.88	1300
88-14	75-16	.25	75	6 88	7 50	2.38	7 62	8.25	900
1 25-12	1 00-14	38	1 00	7 12	7 75	2 62	7 88	8.50	900
1 50-12	1 25-12	50	1 25	7 38	8.00	2.88	8.12	8 75	900
1 75-12	1 50-12	50	1 38	7 50	8 12	3 00	8 25	8 88	900
2 25-12	1 88-12	62	1 62	7 75	8 38	3 25	8 50	9.12	900
88-14	75-16	25	75	7.12	7.75	2 38	7 88	8 50	750
1.25-12	1 00-14	38	1 00	7 38	8 00	2 62	8 12	8 75	1000
1.50-12	1 25-12	50	1 25	7 62	8 25	2 88	8 38	9 00	1000
1 75-12	1 50-12	50	1 38	7 75	8.38	3 00	8.50	9 12	1000
2 25-12	1 88-12	62	1 62	8 00	8.62	3 25	8 75	9 38	1000
2 75-12	2 25-12	62	1 62	8 00	8 62	3.25	8 75	9 38	1000
3.25-12	2 50-12	62	1 62	8.00	8.62	3.25	8.75	9.38	1000
1 25-12 1 50-12 1 75-12 2.25-12 2 75-12 3 25-12 3 75-12	1 00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	25 38 38 50 50 50 50 50	88 1 12 1 25 1 50 1 50 1 50 1 50 1 50	8.12 8.38 8.50 8 75 8 75 8 75 8 75 8 75	8.88 9 12 9 25 9 50 9.50 9 50 9 50	2 75 3.00 3 12 3.38 3 38 3.38 3.38 3.38 3 38	9 12 9 38 9 50 9.75 9.75 9 75 9 75 9 75	9.88 10 12 10.25 10 50 10 50 10.50 10 50	750 750 750 750 750 750 750 750


STANDARD ROD END STYLES

INTERMEDIATE MALE THREAD

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods) minus 062 (1 38-5 50 rods)


minus .062 (1 38-5 50 rods)


Series 2H and 3L Hydraulic Cylinders

T (THREAD)								
SMALL MALE SM	INTER- MEDIATE MALE	SHORT FEMALE SF IM	v	W	XC	Y	ZC	PSI Rating†
.44-20	.50-20	44-20	25	.62	5 38	1.88	6.13	1750
75-16	88-14	75-16	.50	1.00	5 75	2 25	6 50	1750
44-20	.50-20	.44-20	25	62	5.38	1.88	6.13	980
75-16	88-14	75-16	.50	,1 00	5 75	2 25	6 50	980
1.00-14	1.25-12	1.00-14	.62	1 25	6.00	2 50	6.75	980
44-20	.50-20	44-20	25	.62	5.50	1.88	6.25	630
.75-16	.88-14	.75-16	50	1 00	5 88	2.25	6 62	630
1.00-14	1.25-12	1.00-14	62	1 25	6 12	2 50	6.88	630
1.25-12	1.50-12	1.25-12	75	1 50	6.38	2 75	7.13	630
75-16	88-14	75-16	25	.75	6.88	2.38	8.12	830
1 00-14	1 25-12	1.00-14	38	1.00	7 12	2 62	8 38	830
1 25-12	1 50-12	1 25-12	50	1.25	7.38	2.88	8.62	830
1 50-12	1.75-12	1.50-12	50	1 38	7 50	3.00	8.75	830
75-16	.88-14	75-16	25	75	6 88	2 38	8 12	550
1 00-14	1 25-12	1 00-14	38	1.00	7.12	2 62	8 38	550
1 25-12	1.50-12	1 25-12	50	1.25	7 38	2 88	8.62	550
1 50-12	1 75-12	1 50-12	50	1.38	7.50	3.00	8 75	550
1 88-12	2.25-12	1 88-12	62	1.62	7 75	3 25	9 00	550
75-16	.88-14	.75-16	25	.75	7.12	2 38	8.38	350
1 00-14	1 25-12	1 00-14	38	1 00	7 38	2 62	8.62	350
1 25-12	1 50-12	1 25-12	50	1.25	7 62	2 88	8.88	350
1 50-12	1 75-12	1 50-12	50	1 38	7 75	3 00	9 00	350
1.88-12	2.25-12	1.88-12	62	1.62	8.00	3.25	9.25	350
2.25-12	2 75-12	2 25-12	.62	1.62	8.00	3 25	9 25	350
2 50-12	3.25-12	2.50-12	62	1.62	8.00	3.25	9 25	350
1.00-14 1 25-12 1.50-12 1 88-12 2.25-12 2 50-12 3 00-12	1.25-12 1 50-12 1 75-12 2 25-12 2 75-12 3 25-12 3.75-12	1.00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	25 38 38 50 50 50 .50	.88 1 12 1.25 1 50 1 50 1.50 1.50	8.12 8 38 8 50 8 75 8 75 8.75 8.75 8 75	2.75 3 00 3 12 3 38 3 38 3.38 3.38 3 38	9 62 9.88 10 00 10.25 10.25 10.25 10 25	440 440 440 440 440 440 440 440

MPU3

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

* Available in MS2, MS3, MS4, MS7, MF1, MF5, ME5, MT1. MT4, see single rod pages for mounting dimensions and appropriate P.S I. Ratings

1 75

1 75

2 94

3 19

44

4 75

5 00

5 50

6.00

4 5C

5 5C

6 50

3/4

For Models MS2 and MS3 (1 50" thru 5 00" bores), add 50" to Dimension "SS." For Models MS7 and MS4, consult factory for Dimensions "SE" and "SN

minus .062 (1 38-5 50 rods)

PILOT FXT

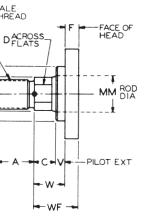
←W

-WF ----

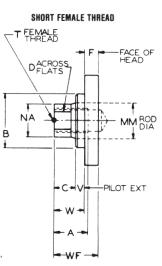
Series 2H and 3L Hydraulic Cylinders

	T (THREAD)							
SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female Sf	v	w	Y	ZL	ZM	PSI Rating†
44-20 75-16	50-20 88-14	44-20 75-16	25 50	62 1 00	1 88 2 25	5 75 6 12	6 12 6 88	1800 1800
44-20 75-16 1 00-14	50-20 88-14 1 25-12	44-20 75-16 1 00-14	25 50 62	62 1 00 1 25	1 88 2 25 2 50	5 44 5 81 6 44	6 12 6 88 7 38	1800 1800 1800
44-20 75-16 1 00-14 1 25-12	50-20 88-14 1 25-12 1 50-12	44-20 75-16 1 00-14 1 25-12	25 50 62 75	62 1 00 1 25 1 50	1 88 2 25 2 50 2 75	5 56 5 94 6 56 6 81	6 25 7 00 7 50 8 00	1000 1400 1400 1400
75-16 1 00-14 1 25-12 1 50-12	88-14 1 25-12 1 50-12 1 75-12	75-16 1 00-14 1 25-12 1 50-12	25 38 50 50	75 1 00 1 25 1 38	2 38 2 62 2 88 3 00	6 50 6 75 7 62 7 75	7 50 8 00 8 50 8 75	1300 1300 1300 1300 1300
75-16 1 00-14 1 25-12 1 50-12 1 88-12	88-14 1 25-12 1.50-12 1 75-12 2.25-12	75-16 1 00-14 1 25-12 1 50-12 1 88-12	25 38 50 50 62	75 1 00 1 25 1 38 1 62	2 38 2 62 2 88 3 00 3 25	6 50 6 75 7 62 7 75 8 00	7 50 8 00 8 50 8 75 9 25	900 900 900 900 900
75-16 1 00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12	88-14 1 25-12 1 50-12 1 75-12 2.25-12 2 75-12 3 25-12	75-16 1 00-14 1.25-12 1 50-12 1 88-12 2 25-12 2 50-12	25 38 50 50 62 62 62	75 1 00 1 25 1 38 1 62 1 62 1 62	2 38 2 62 2 88 3 00 3 25 3 25 3 25 3 25	6 81 7 06 7 94 8 06 8 31 8 31 8 31	7 75 8 25 8 75 9 00 9 50 9 50 9.50	750 1000 1000 1000 1000 1000 1000
1 00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	1 25-12 1 50-12 1 75-12 2 25-12 2 75-12 3 25-12 3.75-12	1 00-14 1 25-12 1 50-12 1.88-12 2 25-12 2 50-12 3 00-12	25 38 38 50 50 50 50	88 1 12 1 25 1 50 1 50 1 50 1 50 1 50	2 75 3 00 3 12 3 38 3 38 3.38 3.38 3 38	7 56 7 81 7 94 8 94 8 94 8 94 8 94 8 94	8 75 9 25 9 50 10 00 10 00 10 00 10 00	750 750 750 750 750 750 750 750

MXO-D


* Where RD is not shown, square retainer is used. See RETAINER PLATE CONSTRUCTION IN INSTALLATION, OPERATION AND

† CAUTION: PSI ratings shown are HANNA recommended maximum operating pressures. Check STROKE LIMITATION DATA IN TECHNICAL INFORMATION section which may reduce maximum operating pressure. Check STOP TUBE DATA (TECHNICAL


NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly

STANDARD ROD END STYLES

INTERMEDIATE MALE THREAD

NOTE: Dimension "NA" is the rod diameter minus .030 (.62 & 1.00 rods),

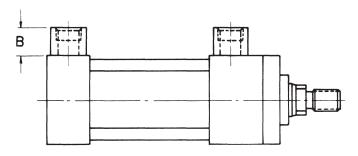
TECHNICAL INFORMATION

DESCRIPTION

Port Size and Location	ports and	ipe port locatio bossed ports a the appropriate N:	are a
Stroke Limitation Data	Oversize velocities	s are intended f or additional p s within the cyli s of 15 feet per s	orts i inder
Stop Tube Data	POR	T SIZE	
Hydraulic Force Data	•	SER	RIES 2
Cylinder Cushion	BORE	STANDARD Sae Port	C B/
	1.50	#8 (.750-16)	#12
	2.00	#8 (.750-16)	#12
XO	2.50	#8 (.750-16)	#12
	3.25 4.00	#12 (1.062-12) #12 (1.062-12)	#16
	4.00 5.00	#12 (1.062-12)	#16
	6.00	#16 (1.312-12)	#20
	7.00	#20 (1.625-12)	#24
	8.00	#24 (1 875-12)	#32
	10.00		
	12.00		
	14.00		
X			

PORT LOCATION

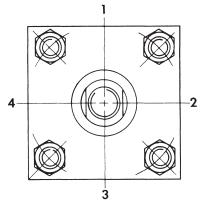
Numbers 1, 2, 3 and 4 around end view of cylinder drawings are for describing optional pipe port locations. Position 1 is standard. In many cases ports can be positioned at 2, 3 or 4 by rotating the heads at assembly. In other cases where it is undesirable to rotate the heads because of corresponding rotation of cylinder mountings, additional ports can usually be placed at positions 2, 3 or 4. Orders or inquiries should state port locations for rod and cap end heads, if other than standard. When changing port locations, careful attention should be paid to clearance between pipes, cylinder mountings, and the heads of any mounting screws.

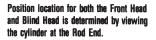

Standard ports will be supplied at Position 1. Orders should specify pipe port locations if other than standard. Optional ports and bossed ports are available. Refer to the charts below to select the appropriate port.

CAUTION:

Cylinders are intended for operation with standard ports. Oversize or additional ports may result in unacceptable fluid velocities within the cylinder. Fluid velocities in the supply line in excess of 15 feet per second are not recommended.

SERIES 2H OPTIONAL PORTING


BORE	STANDARD Sae Port	OVERSIZED Bossed Sae	DIM. B	STANDARD NPT PORT	OVERSIZE Bossed Port		BORE	STANDARD NPT PORT	OVERSIZED Bossed NPT	DIM. B	OPTIONAL Sae Port	OVERSIZE Bossed sae
1.50	#8 (.750-16)	#12 (1.062-12)	15/16	1/2	3/4	1 [1.50	3/8	1/2	15/16	#6 (.562-18)	#10 (.875-14)
2.00	#8 (.750-16)	#12 (1.062-12)	15/16	1/2	3/4		2.00	3/8	1/2	15/16	#6 (.562-18)	#10 (.875-14)
2.50	#8 (.750-16)	#12 (1 062-12)	15/16	1/2	3/4		2.50	3/8	1/2	15/16	#6 (.562-18)	#10 (.875-14)
3.25	#12 (1.062-12)	#16 (1.312-12)	1-1/8	3/4	1		3.25	1/2	3/4	15/16	#10 (.875-14)	#12 (1.062-12)
4.00	#12 (1.062-12)	#16 (1.312-12)	1-1/8	3/4	1		4.00	1/2	3/4	15/16	#10 (.875-14)	#12 (1.062-12)
5.00	#12 (1.062-12)	#16 (1.312-12)	1-1/8	3/4	1		5.00	1/2	3/4	15/16	#10 (.875-14)	#12 (1.062-12)
6.00	#16 (1.312-12)	#20 (1.625-12)	1-1/4	1	1-1/4		6.00	3/4	1	1-1/8	#12 (1.062-14)	#16 (1 312-12)
7.00	#20 (1.625-12)	#24 (1.875-12)	1-1/2	1-1/4	1-1/2							L
8.00	#24 (1 875-12)	#32 (2.50-12)	1-19/32	1-1/2	2							
10.00			1-19/32	2	2-1/2							
12.00				2-1/2	3							
14.00				2-1/2	3							



PAGE

Series 2H and 3L Hydraulic Cylinders

PORT NUMBERING AND POSITIONING

SERIES 3L OPTIONAL PORTING

STROKE LIMITATION DATA

The rod diameter has to be capable of withstanding any compressive force developed by the cylinder working against the load. A piston rod diameter with adequate column strength to handle the compressive force of the application can be selected from the convenient pre-calculated chart below.

NOTE: SEE APPLICATION

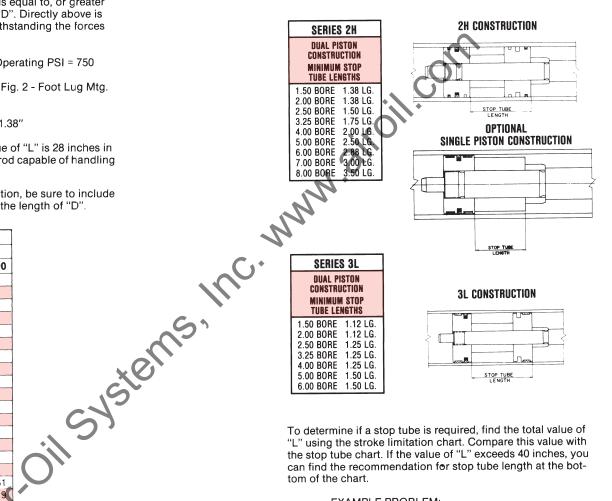
FIGURES ON NEXT PAGE.

To use this chart find the force value, developed by the application, in the left column. Next, select the figure which resembles your application and then multiply "D" times the factor given in that figure. Finally, opposite the corresponding force value, find the value of "L" which is equal to, or greater than, the figure derived from factoring "D". Directly above is the rod diameter which is capable of withstanding the forces developed in the application.

EXAMPLE:	Cylinder Bore = 4.00"	Operating PSI = 750
	Force Value 9428 lbs.	
	Application - Resemble	es Fig. 2 - Foot Lug Mtg.
	Stroke = 40"	
	"L" = 0.7 x 40; L = 28"	
	Correct Rod Diameter	= 1.38"

The total force is 9428 lbs., and the value of "L" is 28 inches in this application. The smallest diameter rod capable of handling this situation is 1.38 inches.

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of "D"


FORCE				VA	ALUE	0F ''L'	' IN IN	CHES	5				
VALUE				PI	STON	ROD	DIAM	ETER					
in pounds	.62	1.00	1.38	1.75	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	7.00
100	66												
200	47												
400	33	85											
600	27	70	132										
800	24	60	114	184									
1000	21	54	102	165	215								
1300	18	47	60	145	188								
1700	16	41	78	127	165	258							
2100	14	37	71	114	149	232							
2500	13	34	65	104	136	213	304						
3000	12	31	58	95	124	192	280	381					
4000	10	27	51	83	108	162	242	330	430				
5000	9	24	46	74	96	150	217	295	385				
6000	8	22	42	67	89	137	198	269	352	443			
8000	7	19	36	58	76	119	172	233	305	384	475		
10000		17	32	52	68	106	153	209	273	344	426	514	
12000		15	29	48	62	97	139	190	249	314	328	468	761
16000		13	26	42	54	84	121	165	215	272	316	407	659
20000			23	38	48	75	109	148	193	243	301	365	
30000			18	31	39	61	89	120	153	198	245	297	481
40000				27	34	53	77	104	136	172	213	257	417
50000				23	31	48	69	93	122	153	190	230	373
60000				21	28	44	63	85	111	140	174	210	340
80000					24	38	54	74	96	1.22	143	192	295
100000						34	48	66	86	109	132	163	264
120000						31	44	60	79	100	121	142	240
140000							41	56	73	92	112	135	223
160000							38	52	63	86	105	129	209
200000								47	61	77	93	115	187
250000								42	54	69	84	103	167
300000													152
350000													141
400000													131
500000													118

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of "D".

STOP TUBE DATA

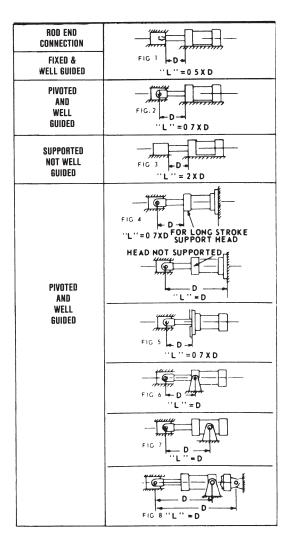
Long stroke cylinders can be subjected to a buckling action and excessive bearing wear due to the weight of the exposed rod. To reduce wear a stop tube is recommended.

All cylinders cushioned and non-cushioned are supplied with the double piston construction. General construction of cylinder stop tube is illustrated below.

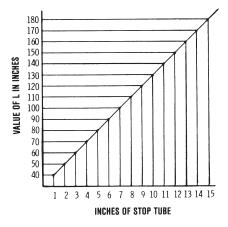
To determine if a stop tube is required, find the total value of "L" using the stroke limitation chart. Compare this value with the stop tube chart. If the value of "L" exceeds 40 inches, you can find the recommendation for stop tube length at the bottom of the chart.

> EXAMPLE PROBLEM: Cylinder Model MP1-3L-NC-4-27-KSM-1A Accessory - V-6 Clevis Pressure - 1500 PSI Clevis Mount - Horizontal

From the description, the cylinder falls into Fig. 8. To determine the value of "L":


ADD:	MP1	"XC" Dimension	7-3/4"
	V-6	"CE" Dimension	5-1/2"
	Two tim	les stroke (2 x 27)	54"

Total Value of "L" 67-1/4"


Looking this up on the chart, you'll find a recommended stop tube length of 4 inches.

The amount of stop tube will increase the stroke-plus dimensions of the cylinder by the same value. Add length of the stop tube to the value of "L" and recheck column strength on stroke limitation chart.

Series 2H and 3L Hydraulic Cylinders

STOP TUBE CHART

HYDRAULIC FORCE DATA

WHAT BORE SIZE DO YOU NEED?

The force formula for determining the force produced by a cylinder is

F = A X P S I

Force (lbs.) = Cylinder Piston Area (sq. in.) X Line Pressure (lbs./sq. in.)

Chart C1 shows the force produced by specific cylinder bore sizes at various pressures. Forces not listed on the chart can be calculated by using the formula F = A xPSI. An example of this formula follows:

EXAMPLE: Determine the thrust of a 14.00" bore cylinder operating at 1250 p.s.i. hydraulic line pressure. $F = 153.94 \times 1250$ F = 192,425

To select the proper bore size, first determine the force required for your particular application, then add a factor of five percent to allow for internal frictional losses.

Locate the total required force in Chart C1 in the column that matches your system's operating pressure. The bore size that produces the necessary total force at the desired operating pressure is the proper size for your application.

Chart C1 **HYDRAULIC CYLINDER FORCE CHART***

pressure be calcu PSI. An e	lated by	using th	ne formu	la F = A			produce desired	s the neo	cessary to pressur	ore size that otal force at the e is the proper si	ize www.	To * Fo
												C
												Ch
Chart C1			ł	IYDRAUL	IC CYLIN	DER FOR	CE CHARI	*			Si	yo
						STROKE				Gallons of		cy
	Piston					Pounds of Forc	- T			Cil Consumed		06
Bore	Area Sq. In.	250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	2500 PSI	3000 PSI	Per Inch of Travel	GU	
1.50	1 77	442	884	1325	1767	2651	3534	4420	5304	.00765		
2.00	3 14	786	1571	2357	3142	4713	6285	7850	9420	.0136	6	
2 50	4.91	1227	2455	3682	4909	7364	9815	12270	14730	.0212		
3.25	8.29	2074	4148	6222	8296	12440	16590	20740	24890	0359		
4.00	12.56	3143	6285	9428	12560	18860	25140	31415	37700	.0544		
5 00	19.63	4910	9820	14730	19640	29460	39280	49085	58900	.0860		
6.00	28.27	7068	14140	21200	28270	42400	56540	70685	84820	1224		
7.00	38 48	9623	19240	28870	38490	57740	76980	96210	115450	1666		
8.00	50.26	12570	25140	37700	50270	75400	100500	125660	150800	.2176		
10.00	78.54	19640	39270	58900	78540	117800	157100	196350	235620	.3393		
12.00	113 10	28280	56550	84820	113100	169600	226200	282750	339300	.4886		
14 00	153.94	38480	76970	115455	153940	230910	307880	384850	461820	.6664		

Force (pounds)

Cylinder Piston Area =

(in square inches)

Line Pressure (in pounds per sq. in.)

EXAMPLE:

Determine the thrust of a 4.00 inch bore cylinder operating at 1000 psi hydraulic line pressure

 $F = 12.56 \times 1000$

F = 12,560 lbs.

Chart C1A

Rod	Rod	To determine	pull stroke thrust	or consumption,		STROKE for the rod diamete	er from the corresp	onding cylinder b	ore in Chart C1.	Gallons of Oil Consumed	
Dia.	Area Sq. In.	250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	2500 PSI	3000 PSI	Per Inch of Travel	
62	307	77	154	230	307	461	615	767	920	00133	
1 00	78	196	393	590	785	1175	1570	1950	2355	.0034	
1 37	1 48	371	742	1113	1485	2230	2970	3500	4455	0067	
1.75	2 40	601	1202	1803	2405	3610	4810	6010	7510	0104	
2 00	3 14	786	1572	2357	3142	4715	6285	7850	9420	.0136	
2 50	4 91	1225	2450	3682	4909	7350	9815	12270	14730	0212	
3 00	7 07	1767	3535	5302	7070	10605	14140	17680	21200	0306	
3 50	9 62	2405	4810	7216	9620	14435	19240	24005	28810	.0417	
4 00	12.56	3142	6284	9426	12570	18850	25140	31415	37700	.0544	
4 50	15 90	3976	7952	11930	15900	23860	31810	38200	47750	.0688	
5 00	19-63	4909	9820	14730	19640	29450	39270	49085	58900	.0860	
5 50	23 76	5940	11880	17820	23760	35640	47575	59250	71250	1028	
6 00	28 27	7068	14140	21200	28270	42400	56540	70685	84820	1224	
7 00	38 49	9623	19240	28870	38490	57740	76980	96210	115450	1666	
8 00	50 26	12570	25140	37700	50270	75400	100500	125660	150800	2176	
10 00	78.54	19635	39270	58905	78540	117810	157080	196350	235620	3400	

To obtain forces not given, multiply piston area times operating pressure * Forces given do not allow for frictional or other power losses. 1 U S Gallon = 231 Cubic Inches

COMPARE PRESSURE RATINGS

Chart C2 shows the pressure ratings for HANNA Hydraulic Cylinders and may help you in determining the most economical cylinder for your application. The 3L Series

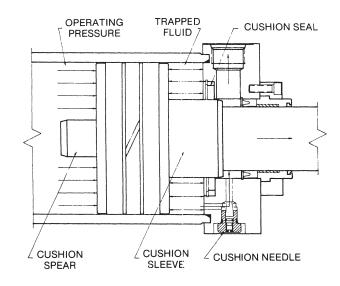
Chart C2

HYDRAULIC CYLINDER RATING* (P.S.I.)

	SERIES 2H	SERIES 2H									
Bore	3:1 Factor of Safety	4:1 Factor of Safety									
1.50	2900	2180									
2 00	3730	2800									
2.50	3140	2360									
3 25	3040	2280									
4 00	2960	2220									
5 00	2785	2090									
6 00	2540	1905									
7 00	2740	2053									
8 00	2540	1905									
10.00	2400	1800									
12.00	2600	1950									
14 00	2570	1930									

Models MF1, MF2, MF5 and MF6 may carry lower Pressure Ratings in some cases. Refer to the appropriate catalog pages for exact ratings on these Models.

Hydraulic Cylinders equipped with stainless steel piston rods have reduced Pressure Ratings due to the lower strength properties of stainless steel. Consult Factory for specific Ratings.


Series 2H and 3L Hydraulic Cylinders

is designed for medium duty service (under 2000 PSI). The 2H Series is a heavy-duty high pressure cylinder line (3000 PSI).

	SERIES 3L									
Bore	3:1 Factor of Safety	4:1 Factor of Safety								
1 50	1915	1435								
2 00	1200	900								
2 50	750	560								
3.25	1180	885								
4 00	790	595								
5.00	600	460								
6.00	650	490								

* Ratings are based on the yield point of the weakest component and smallest rod size. See mounting pages for maximum recommended operating pressures.

CYLINDER CUSHION

Cushions in cylinders are primarily intended to protect the cylinder from damaging impacts at the ends of the stroke. Properly selected and adjusted cushions may also reduce noise, reduce loading damage, may increase machine output.

As a general guide line, the use of hydraulic cushions should be considered whenever the velocity of the piston approaches 20 to 25 feet per minute. When piston velocity exceeds 35 to 40 feet per minute, the amount of energy being generated will usually demand the use of cushions to decelerate the piston. Cushions should also be seriously considered when a large mass imparts inertia loading to the cylinder.

Cushions work by trapping a volume of fluid at the end of the stroke to create a back pressure which resists the force being exerted on the working side of the piston. As shown above, this back pressure is developed when the cushion sleeve or spear enters into the cushion seal and the fluid is bled down through the orifice at the cushion seal and past the cushion adjustment needle. The back pressure developed must be sufficient to resist the force developed by the application. To determine if a suitable cushion can be provided in the cylinder selected for the application calculate the total energy which must be absorbed, as outlined below, and compare with the cushion capacity listed in the cushion capacity table

NOTE: On Series 2H, the Head End Cushion on 1.50" Bore with (F) Rod is not adjustable.

> On Series 3L, Cushions are not available on the Head End of 1.50' Bore (F) Rod, 2.00" Bore (G) Rod and 2.50" Bore (H) Rod.

- **DETERMINING ENERGY OF THE APPLICATION** Things to consider: 1. Kinetic energy.
 - 2. Propelling energy (including gravity).
- I. To solve for kinetic energy: 0.1865 x W x V² = K.E. W = Weight of the entire moving mass (pounds) (include cylinder piston rod in the mass figure) \dot{V} = Velocity at entering the cushion (feet/sec.) K.E. = Kinetic Energy (inch pounds).
- II. To solve for propelling energy:
 - $F x S = P_1$
 - F = Force exerted by the cylinder (Piston Area x PSI relief valve setting).

NOTE: Cushion needle extends beyond the edge of head on the following:

B.H.

Х

.195

.195

.195

.085

2H-LINE (both heads)

Х

.148

.195

F.H.

Х

.235

.235

.235

.125

Bore

1.50

2.00

3L-LINE

Bore

1.50

2.00

2.50

3.25

- S = Cushion length (inches)
- P₁ = Propelling Energy (inch pounds).
- III. Gravity effects must also be considered if the cylinder is mounted in a vertical plane. If the mass is moving down into the cylinder cushion, the energy due to gravity must be added to the propelling energy, P₁. If the mass is mov-ing up into the cushion, the gravity is negative and this energy may be subtracted from the propelling energy, P₁.

To solve for propelling energy due to gravity: $W \times S = P_2$ W = Weight of moving mass S = Length of cushion

P₂ = Propelling energy due to gravity (inch pounds).

If the load is horizontal, the effect of gravity is zero and will not affect the total propelling energy.

TOTAL ENERGY IS: K.E. + P1 ± P2 * K.E. = Total Kinetic Energy Formula I. P1 = Total Propelling Energy Formula II. P2 = Total Propelling Energy Formula III.

* Add if gravity is positive --Subtract if gravity is negative --Disregard if cylinder travel is horizontal.

					0031			J					
			S	ERIES 2H						S	ERIES 3L		
	BORE	ROD	HEAD) END	CAP	END	Г	BORE	ROD	HEAD END		CAP	END
		DIA.	CUSHION Length	CAPACITY (INLBS.)	CUSHION Length	CAPACITY (INLBS.)			DIA.	CUSHION Length	CAPACITY (INLBS.)	CUSHION Length	CAPACITY (INLBS.)
	1.50	.62 1 00	73 .84	4,840 3,250	74	6,310		1 50	62 1 00	62 N/A	2,050 N/A	.50	2,130
	2 00	1 00 1.38	73 73	7,845 5,545	74	10,900		2 00	.62 1 00	62 62	3,495 3,495	50	3,850
	2.50	1 00 1.38 1 75	73 73 73	11,990 8,510 8,510	74	17,430		2.50	1.38 62 1.00	N/A .62 .62	N/A 3,740 3,740	50	3,635
	3 25	1.38 1.75 2.00		17,470 17,470 13,970	83	32,280			1.38 1.75 1.00	62 N/A .81	3,050 N/A 10,810		
	4.00	1 75 2.00 2.50	77 .77 .77	33,910 28,525 28,525	83	50,190		3 25	1.38 1.75 2.00	.81 .81 .81 .81	10,810 10,810 7,350 7,350	61	9,730
	5 00	2.00	77 77 77 77 77	47,230 47,230 25,690 25,690	77	71,760		4 00	1 00 1.38 1 75 2.00 2.50	81 81 .81 .81 .81	8,865 8,865 7,140 7,140 5,800	61	7,470
N	6 00	2 50 3.00 3 50 4.00	88 88 .88 88	91,995 48,475 48,475 47,475	96	127,930		5.00	1.00 1.38 1.75 2.00	.81 .81 .81 .81	11,670 11,670 10,290 10 290	.61	9,425
	7.00	3.00 3.50 4.00 4.50	1.25 1 25 1.25 1.22	132,670 132,670 132,670 79,780	1 39	249,570		5.00	2.50 3 00 3.50	.81 81 .81	9,216 6,035 6,035	.01	3,423
aysterns, www.	8.00	5.00 3.50 4.00 4.50 5.00 5.00 5.50	1.22 1.38 1.38 1.35 1.35 1.35 1.35	79,780 227,750 227,750 136,320 136,320 136,320	1 46	339,515		6 00	1 38 1.75 2.00 2 50 3.00 3.50 4 00	.81 81 81 81 81 81 81 .81	19,430 17,875 17,875 16,670 13,350 13,350 11,164	73	18,180
xen.	10.00	4 50 5.00 5.50 7.00	1 83 1.83 1.83 1 83	438,100 438,100 438,100 341,110	1 84	677,440		L				L	L
at	12 00	5.50 7.00 8.00	2.58 2.58 2.58	1,063,430 926,710 769,700	2.09	1,130,050							
	14 00	7 00 8 00 10.00	2 58 2.58 2 58	1,453,540 1,296,550 921,750	2 34	1,743,680							

TYPICAL APPLICATION PROBLEM

You have tentatively chosen a 2H Series cylinder with a 3-1/4" bore to move a 4000 pound mass horizontally at 3 feet per second. The system relief valve setting is 1000 psi. The cylinder is equipped with the standard 1-3/8" diameter piston rod and the effective cushion stroke or length is .77 inch.

> Kinetic Energy: 0.1865 x 4000 lbs. x (3)² 746 x 9 = 6714 in. lbs. Propelling Energy: 8.29 x 1000 x .77 = 6383 Total Application Energy: 6714 + 6383 = 13097 in. lbs.

Series 2H and 3L Hydraulic Cylinders

CUSHION CAPACITY CHART

The total energy seen by the cushion in this application is 13097 inch pounds. By referring to the cushion capacity chart shown above, we find the standard 3-1/4" bore 2H Series cushion can adequately handle the energy. If the energy developed exceeds the capacity of the standard cushion consider use of supercushions or changes in the hydraulic circuit which will reduce the amount of energy the cushions must absorb. (Supercushions have the same physical appearance as the standard cushion described above, except that the effective cushion length is doubled. An additional head or cap on both are added to accommodate the longer cushion sleeve or spear. The overall length of the cylinder body changes accordingly. Capacities of supercushions are double those shown in the cushion capacity chart.)

If in doubt about selecting a cushion, consult the factory with detailed application information and a recommendation will be made.

Caution: Cushion adjustment needles require only about one to one-half turn adjustment. Do not unscrew beyond the point at which the head of the screw is flushed with the surface of the head or cap.

INSTALLATION, OPERATION AND MAINTENANCE DATA

SEAL KITS

All cylinders are fully field identifiable, including packing option codes.

NAMEPLATE CODE EXAMPLE

1 (STANDARD) Temperature Range -20°F to +200°F Buna-N O-Rings, Polyurethane Rod Packing and Rod Wiper.

2 (OPTIONAL) Temperature Range -20°F to +200°F Buna-N O-Rings, Buna-N Multiple Lip Rod Packing, Polyurethane Rod Wiper.

3 (OPTIONAL) Temperature Range -20°F to +400°F Viton O-Rings, Viton Rod Packing, Teflon Rod Wiper.

The correct Rod Piston Kits and Piston Packing Kits can be furnished quickly if you will indicate the serial number of the cylinder as shown on the nameplate, and/or by accurately following the ordering examples shown above.

DESCRIPTION PAGE Seal Kits 89 Parts List 90 Retainer Plate Construction 92 Fastener Torques and Cylinder Weights 93

STORAGE:

If cylinders are to be stored before use, they should be stored in the vertical position, rod end up. Cylinders in storage should always be fully protected against the elements or other adverse conditions.

INSTALLATION:

The pipe ports of cylinders are sealed with plastic plugs. The plugs protect the precision internal parts by sealing out damaging dirt and grit. Do not remove port seals until ready to connect piping. To protect cylinders, clean all pipes and pipe fittings of dirt, scale, and thread chips. A filter is recommended to keep the operating fluid free of foreign matter.

Accurate mounting and alignment are essential to proper cylinder performance. By eliminating side loading, packing and bearing life will be increased. Mounting surfaces should be straight, bearings for pin and trunnion mounting must be in line.

Dirt or abrasive matter adhering to the piston rod may cause excessive wear to the piston rod and gland. For best results, protect the cylinder from such dirt. A piston rod protective shield is ideal for this purpose.

OPERATION:

Needle valves in cylinder head and cap of adjustable cushioned cylinders permit regulation of cushioning effect. Adjust needle valve using an Allen wrench, rotating clockwise to increase cushioning and counterclockwise to decrease cushioning effect. Speed control valves are essential for obtaining the best cushioning operation. A proper balance of cushion needle and flow control valve adjustment should result in a smooth stop with no bouncing.

MAINTENANCE:

Parts which may need replacement in the course of normal use are the rod wiper, rod seal and piston seals.

The need for replacement of the rod seal will become evident through the escaping of fluid around the gland.

To replace rod wiper or rod seal, remove the gland from the cylinder. Remove worn rod wiper and rod seal. To reassemble, slip new rod wiper and rod seal into grooves. Care should be exercised not to nick the lips of the seals. Be sure to retorque gland screws to the specified torque for the cylinder.

To replace piston seal, cut the old piston seal, and remove it and the old O-ring from the groove. Install new O-ring. Next, slightly stretch the Teflon piston seal and work it into the groove. Replace wear strip(s). Carefully insert the ram assembly into the tube—this will assure the Teflon seal is reshaped equally.

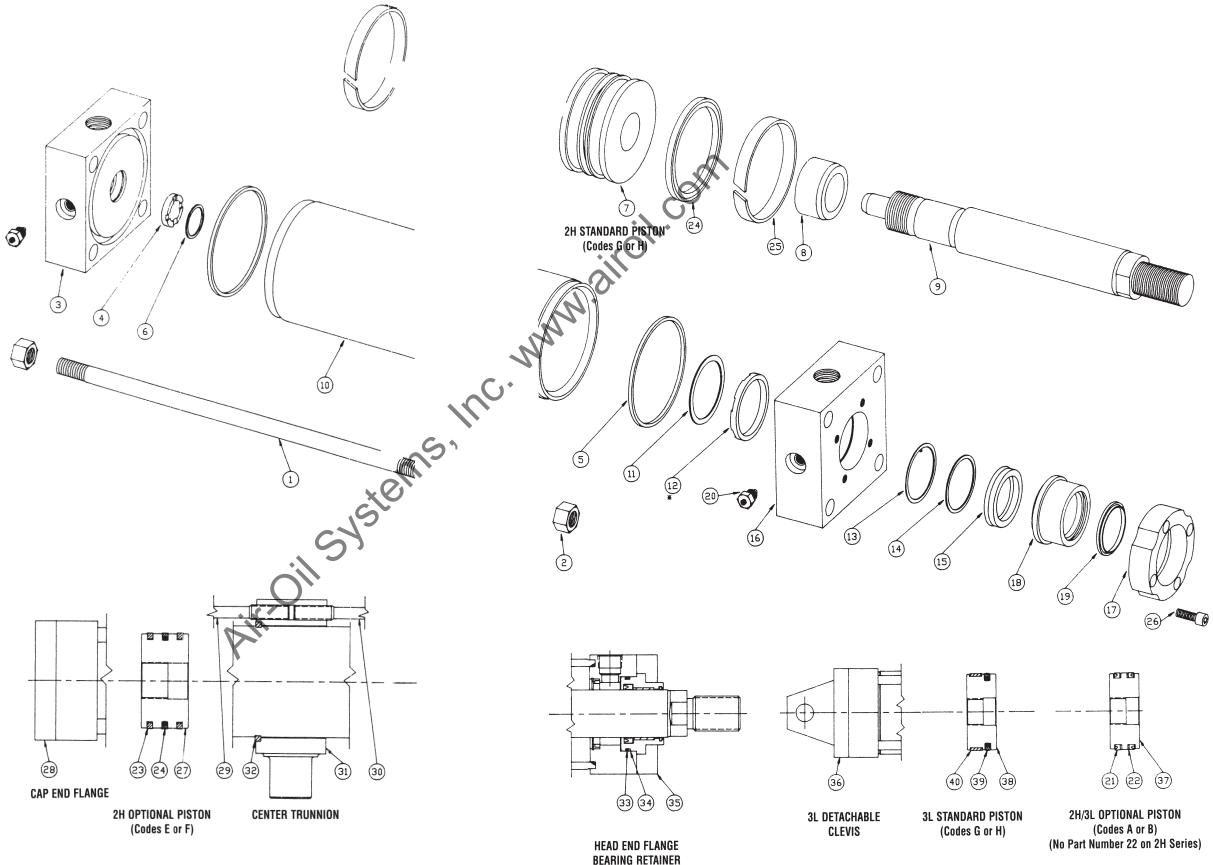
It is recommended that new "O" rings be installed each time the cylinder is disassembled for maintenance. This applies to tube and gland "O" rings. The cushion needle valve "O" rings should also be replaced if these parts are disassembled. When reassembling, be sure to apply proper tie rod torque.

If the cushion action of the cylinder fails, check the cushion float sealing. Check to determine if the bronze ing has been worn on its internal diameter, and if foreign particles have become lodged between the face of the ring and the cylinder head recess face. A free play of the ring, both radially and axially, is normal to allow for centering and cushion float action.

If the cylinder fails to perform the job for which it is ordered, check the following items: 1. That the correct cylinder diameter has been chosen to do the job required. 2. That there is adequate line pressure at the cylinder, under both static and dynamic conditions. 3. That the piston rod is aligned correctly with the load it is pushing or pulling. 4. That the piston seal or the rod seal is not worn, allowing pressure to escape.

Replacement parts can be furnished quickly if you will indicate the serial number of the cylinder as shown on the name plate, and the part name and number.

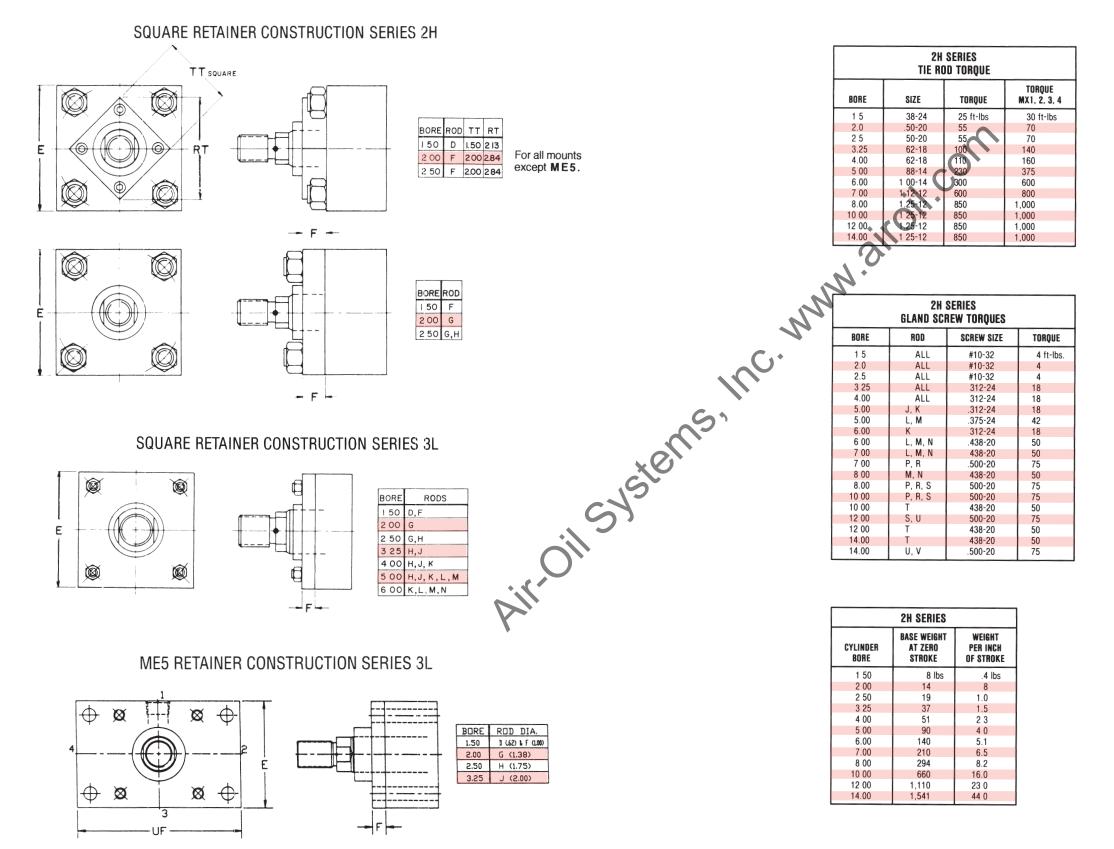
The cylinder illustrated is for reference purposes only, and does not represent any particular model.


Series 2H and 3L Hydraulic Cylinders

Rod Diameter Code PISTON PACKING KITS Ordering Example: SEAL KIT G-2.00 For Series 2H From piston Bore size From packing code Series Code Order by Piston Packing Code, Bore Size and Cylinder Series Code from nameplate as outlined. A Temperature Range -20°F to +200°F Buna-N U-Cups, Teflon Back-Up Washers, Buna-N Tube Seals. (Series 3L only). A Temperature Range -20° F to +200° F Polyurethane U-Cup Seal, Buna Tube Seals. (Series 2H only). **B** Temperature Range -20° F to +400° F Viton U-Cups, Teflon Back-Up Washers, Viton Tube Seals. (Series 3L only). **B** Temperature Range –20° F to +400° F Viton U-Cup Seal, Viton Tube Seals. (Series 2H only). E Temperature Range -20° F to +200° F Cast Iron Rings, Filled Teflon Seal w/Buna-N Expander, Buna-N Tube Seals. (Series 2H only). F Temperature Range -20° F to +400° F Cast Iron Rings, Filled Teflon Seal w/Viton Expander, Viton Tube Seals. (Series 2H only). G Temperature Range -20° F to +200° F Piston Wear Strip(s), Filled Teflon Seal w/Buna-N Expander, Buna-N Tube Seals. H Temperature Range -20° F to +400° F Piston Wear Strip(s), Filled Teflon Seal w/Viton Expander, Viton Tube Seals.

When ordering replacement parts, identify Model Number, Serial Number and Part Number, as shown below.

PART NO.	NO. REQ'D.	DESCRIPTION
1	**	Tie Rod
2	**	Tie Rod Nut
3	1	Сар
4	1	Cap Cushion Float
5	2	O-Ring (Tube)
6	1	Cap Retaining Ring
7	1	2H Standard Piston
8	1	Cushion Sleeve
9	1	Piston Rod
10	1	Tube
11*	1	Head Cushion Retaining Ring
12*	1	Head Cushion Float
13	1	Packing Retaining Ring
14	1	Rod Washer
15	1	Rod Packing
16	1	Front Head
17	1	Retainer Plate
18	1	Gland Assembly
19	1	Rod Wiper
20	2	Cushion Needle
21	2	Piston U-Cup
22	2	Back Up (3L Only)
23	2	Cast Iron Ring (2H Only)
24	1	Filled Teflon Seal with
		Buna Expander
25	2	Wear Strip
26	4/8	Gland Screw
27	1	Optional Piston (2H Only)
28	1	Cap End Flange
29	**	Cap End Tie Rod
30	**	Head End Tie Rod
31	1	Center Trunnion Band
32	4	Trunnion Locator Key (2H Only)
33	1	O-Ring (Gland)
34	1	Back-Up (2H Only)
35	1	Front Flange
36	1	Detachable Clevis (3L Only)
	1	Optional Piston (2H or 3L)
37		
37 38	1	3L Standard Piston
	1 1	3L Standard Piston Filled Teflon Seal with Buna Expander



* 1.50 through 8.00" Bores only.

Series 2H and 3L Hydraulic Cylinders

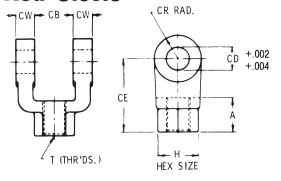
RETAINER PLATE CONSTRUCTION

FASTENER TORQUES AND CYLINDER WEIGHTS

	3L SERIES TIE ROD TORQUE									
BORE SIZE TORQUE MX1, 2, 3, 4										
15	25-28	8 ft-lbs.	8 ft-lbs							
20	31-24	14	14							
25	.31-24	14	14							
3 25	38-24	25	28							
4.00	38-24	25	28							
5.00	.50-20	35	48							
6.00	.50-20	35	48							

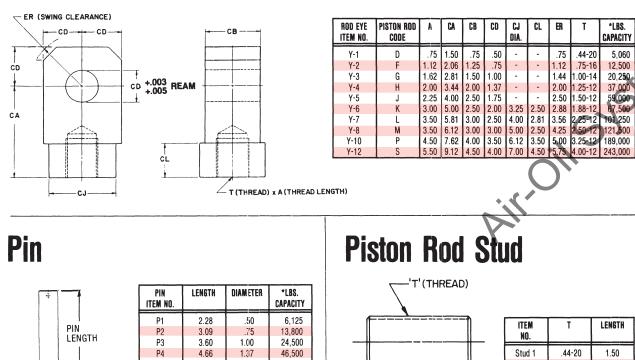
3L SERIES Gland Screw Torques									
BORE	TORQUE								
15		—							
2.0	#10-32	4 ft-lbs							
2 5	#10-32	4							
3 25	#10-32	4							
4 00	#10-32	4							
5.00	#10-32	4							
6.00	25-28	10							

	3L SERIES										
CYLINDER Bore	BASE WEIGHT At Zero Stroke	WEIGHT PER INCH OF STROKE									
1 50	5 lbs	4 lbs									
2.00	65	5									
2 50	10	6									
3.25	20	9									
4 00	27	1.0									
5 00	40	1.2									
6.00	68	16									


MOUNTING ACCESSORIES

These are standard accessories matched to bore size and piston rod code. The Mounting Bracket fits the cap end of Model MP1. The Bracket also fits the piston Rod Clevis with the same number (i.e. B-7 Bracket fits V-7 Rod Clevis). The pin is furnished with Model MP1 and fits the bracket, however, specify if additional pins are required. Pins also fit rod clevis and rod eyes. If you require accessories other than standard for that bore size or piston rod, specify the item number on your order.

Rod Clevis

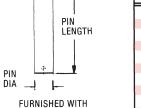


Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.

ROD CLEVIS ITEM NO.	PISTON ROD CODE	A	CB	CD	CE	CR	CW	H	T	*LBS. Capacity
V-1	D	75	.75	50	1.50	62	.50	1.00	.44-20	5,360
V-2	F	1.12	1 25	.75	2.38	88	.62	1.25	.75-16	14,000
V-3	G	1 62	1.50	1.00	3 12	1 12	.75	1.75	1 00-14	22,500
V-4	Н	2.00	2.00	1 37	4.12	1.62	1.00	2.00	1.25-12	41,250
V-5	J	2.25	2.50	1.75	4 50	2.00	1.25	2.75	1.50-12	57,000
V-6	K	3.00	2.50	2.00	5 50	2.25	1.25	3.00	1.88-12	75,000
V-7	L	3 50	3.00	2.50	6.50	2.88	1.50	3.50	2.25-12	112,500
V-8	M	3 50	3.00	3.00	6.75	3.12	1.50	3.88	2.50-12	135,000
V-10	Р	4 50	4.00	3 50	8.50	3.88	2.00	5.00	3.25-12	210,000
V-12	S	5.50	4.50	4 00	10.00	4.38	2 25	6.19	4.00-12	270,000

Rod Eye

75,150


98,150

153,400

220,900

300,650

307.850

COTTERS

P5

P6 P7

P8 P10

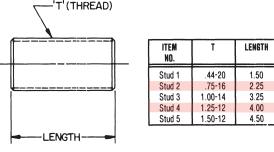
P12

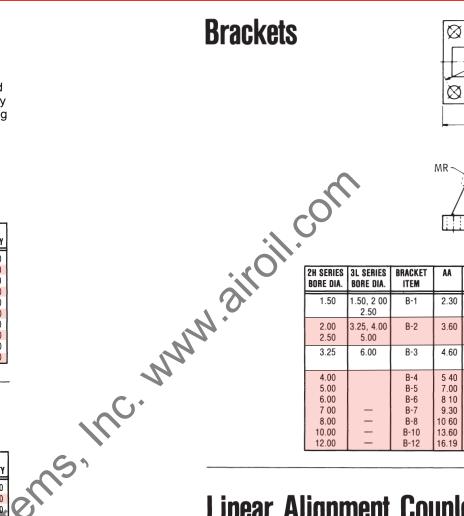
5.66

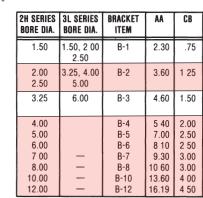
5 72

6.94

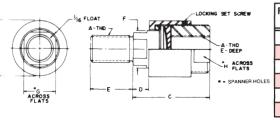
7.19

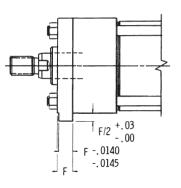

9.31 10.31


1.75

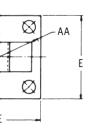

2.00

2.50

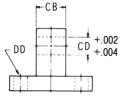

3.00 3.50 4.00



Linear Alignment Coupler



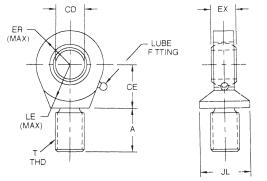
Thrust Key



*LBS. Capacity

Series 2H and 3L Hydraulic Cylinders

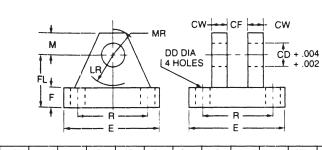
CD	00	DE	E	F	FĹ	LR	M	MR	*LBS. Capacity
.500	44	.56	2.50	.38	1.12	.62	.50	.62	2,500
750	.56	.88	3.50	62	1.88	.88	.75	.88	6,300
1.000	69	1.38	4.50	.75	2.25	1.25	1 00	1.25	10,000
1.375 1.750 2.000 2.500 3.000 3.500 4.000	.69 94 1 06 1 19 1.31 1.81 2.06	1.75 2.25 2.56 3.12 3.25	5.00 6.50 7.50 8 50 9.50 12.62 14 88	.88 88 1.00 1.00 1.00 1.69 1.94	3.00 3 12 3.50 4 00 4.25 7.25 7.75	1.75 2.12 2.38 2.94 3.19 3.62 4.12	1 38 1 75 2.00 2.50 2.75 3.50 4 00	1 75 2 12 2.38 2 94 3.19 3.62 4.12	19,250 21,200 24,500 25,000 22,500 58,500 73,250


PART NO.	A	B	C	D	E	F	6	H	MAX. PULL Load
S-1	7/16 - 20	1-1/4	2	1/2	3/4	5/8	1/2	13/16	2,535
S-2	3/4 - 16	1-3/4	2-5/16	1/2	1-1/8	31/32	13/16	1-1/8	8,750
S-3	1 - 14	2-1/2	2-15/16	17/32	1-5/8	1-11/32	1-5/32	1-5/8	16,125
S-4	1-1/4 - 12	2-1/2	2-15/16	17/32	1-5/8	1-11/32	1-5/32	1-5/8	19,600
S-5	1-1/2 - 12	3-1/4	4-3/8	7/8	2-1/4	1-31/32	1-3/4	2-3/8	34,000
S-6	1-7/8 - 12	3-3/4	5-5/8	1	3	2-15/32	—	—	41,250

Thrust keys are available on most side type mountings. Please refer to model dimension charts for F dimensions. A thrust key eliminates the need for fitted bolts or external keys. It adds extra rigidity to your cylinder mounting when the key is fitted to a keyway milled into your mounting surface.

Series 2H and 3L Hydraulic Cylinders

Spherical Rod Eyes


Order to fit Piston Rod thread size.

ROD EYE ITEM NO.	CD -0.0005	A	CE	EX	ER	LE	Т	JL	*LBS. Capacity
SBY-1	0.5000	.69	.88	.44	.88	.75	.44-20	.88	2.644
SBY-2	0 7500	1 00	1.25	.66	1.25	1.06	.75-16	1.31	9.441
SBY-3	1 0000	1.50	1.88	.88	1.38	1.44	1.00-14	1.50	16.860
SBY-4	1.3750	2.00	2.13	1.19	1.81	1.88	1.25-12	2.00	28.562
SBY-5	1 7500	2 1 3	2.50	1 53	2 19	2.13	1.50-12	2.25	43.005
SBY-6	2.0000	2.88	2 7 5	1.75	2 63	2.50	1.88-12	2.75	70.193

Spherical Clevis Brackets

Order to fit Mounting Plate or Rod Eye

BRACKET ITEM	E	F	м	R	CD	CF	CW	DD	FL	LR	MR	*LBS. Capacity
SBB-1	3.00	.50	50	2.05	0.500	.44	50	.41	1.50	94	.62	5,770
SBB-2	3.75	62	88	2.76	0.750	66	.62	53	2.00	1.38	1.00	9,450
SBB-3	5 50	.75	1.00	4.10	1.000	.88	75	.53	2.50	1.69	1.19	14,300
SBB-4	6.50	88	1 38	4.95	1.375	1 1 9	1 00	.66	3.50	2.44	1.62	20,322
SBB-5	8.50	1.25	1.75	6 58	1 750	1.53	1 25	.91	4 50	2 88	2.06	37,800
SBB-6	10 62	1 50	2.00	7 92	2.000	1.75	1.50	91	5.00	3.31	2.38	50,375

*LBS. Capacity

8,600

19,300

34,300

65,000

105.200

CL

CD

.4997-.0004 1.56 7497-.0005 2.03

.9997-0005 2 50

3746-0006 3.31

.7496-0006 4 22

1.9996-.0007 4.94 137,400

Pivot Pins

Pivot Pins are furnished with two retainer rings.

PIN

ITEM NO.

SBP-1

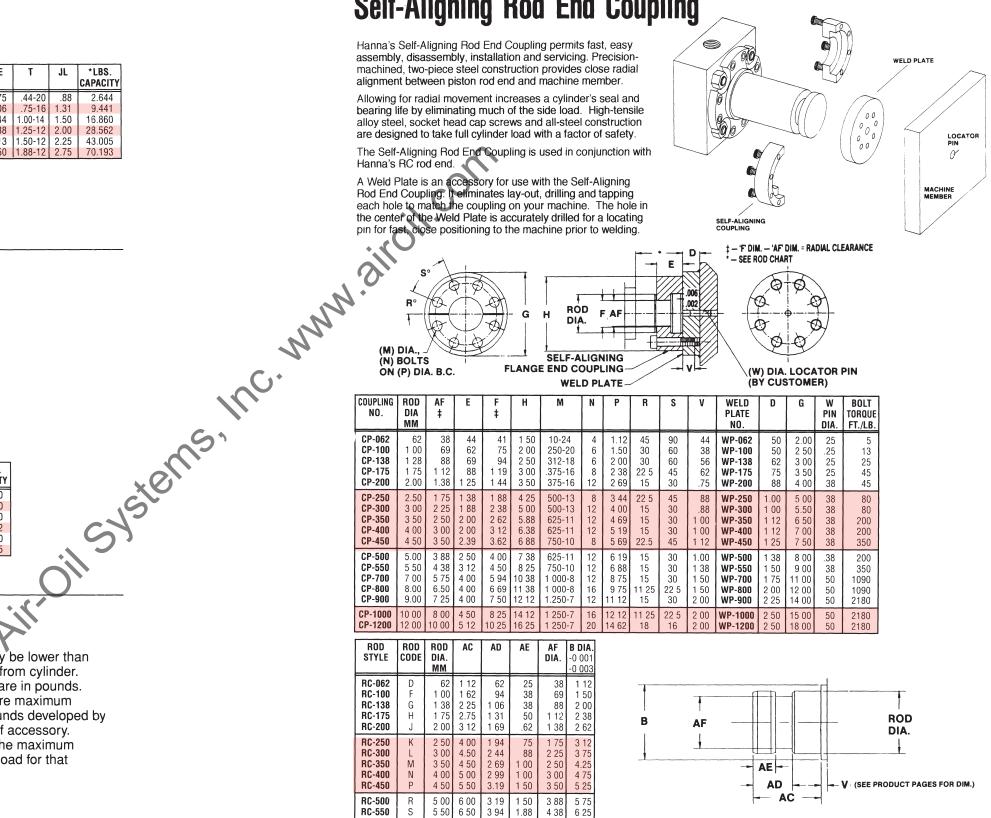
SBP-2

SBP-3

SBP-4

SBP-5

SBP-6


-	
Ļ	-00-
1	
CL	1
	1

***CAUTION**

Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.

Self-Aligning Rod End Coupling

alignment between piston rod end and machine member.

COUPLING No.	ROD DIA MM	AF ‡	E	F ‡	н	М	N	Р
CP-062 CP-100 CP-138 CP-175 CP-200	62 1 00 1 28 1 75 2.00	38 69 88 1 12 1.38	44 62 69 88 1 25	41 75 94 1 19 1 44	1 50 2 00 2 50 3 00 3 50	10-24 250-20 312-18 .375-16 375-16	4 6 8 12	1.12 1.50 2 00 2 38 2 69
CP-250 CP-300 CP-350 CP-400 CP-450	2.50 3 00 3 50 4 00 4 50	1 75 2 25 2 50 3 00 3 50	1 38 1 88 2 00 2 00 2.39	1 88 2 38 2 62 3 12 3.62	4 25 5 00 5.88 6.38 6 88	500-13 500-13 625-11 625-11 750-10	8 12 12 12 12 8	3 44 4 00 4 69 5 19 5 69
CP-500 CP-550 CP-700 CP-800 CP-900	5.00 5 50 7 00 8.00 9.00	3 88 4 38 5 75 6.50 7 25	2 50 3 12 4 00 4 00 4 00	4 00 4 50 5 94 6 69 7 50	7 38 8 25 10 38 11 38 12 12	625-11 750-10 1 000-8 1 000-8 1.250-7	12 12 12 16 12	6 19 6 88 8 75 9 75 11 12
CP-1000 CP-1200	10 00 12 00	8 00 10 00	4 50 5 12	8 25 10 25	14 12 16 25	1 250-7 1 250-7	16 20	12 12 14 62

ROD Style	ROD CODE	ROD DIA. MM	AC	AD	AE	AF DIA.	B DIA. -0 001 -0 003
RC-062	D	62	1 12	62	25	38	1 12
RC-100	F	1 00	1 62	94	38	69	1 50
RC-138	G	1 38	2 25	1 06	38	88	2 00
RC-175	H	1 75	2.75	1 31	50	1 12	2 38
RC-200	J	2 00	3 12	1 69	.62	1 38	2 62
RC-250 RC-300 RC-350 RC-400 RC-450	K L M P	2 50 3 00 3 50 4 00 4 50	4 00 4.50 4 50 5 00 5 50	1 94 2 44 2 69 2 99 3.19	75 88 1 00 1 00 1 50	1 75 2 25 2 50 3 00 3 50	3 12 3 75 4.25 4 75 5 25
RC-500	R	5 00	6 00	3 19	1 50	3 88	5 75
RC-550	S	5 50	6 50	3 94	1.88	4 38	6 25
RC-700	T	7 00	6.50	4 06	2 00	5 75	8 00
RC-800	U	8 00	6 50	4 06	2 00	6 50	9 00
RC-900	Z	9 00	6 75	4 12	2 00	7 25	10 00
RC-1000	V	10.00	7 25	4.62	2 38	8 00	11 00
RC-1200	W	12 00	7 75	5 12	2 88	10 00	13 00

Series 2H and 3L Hydraulic Cylinders

OPTIONS

Hanna offers a wide variety of modifications and options to our Standard 2H and 3L Product Lines. Please contact your local authorized Distributor for more information.

SERIES 2H

Stroke Adjustable Cylinders Drain Glands Metallic Rod Scrapers S.A.E. Flange Fitted Ports Super Cushions Spring Return Cylinders Heavy Duty Air Cylinders Stainless Steel Piston Rods Air Bleeds Epoxy Painting Rod Boots Heavy Chrome Plated Piston Rods Intermediate Center Supports Tightened Sroke Tolerance Full Face Retainer Plates MS1 Mount Tandem Mounted Cylinders

SERIES 3L

Stroke Adjustable Cylinders Drain Glands Metallic Rod Scrapers S.A.E. Flange Fitted Ports Super Cushions Water Service Cylinders Spring Return Cylinders Stainless Steel Piston Rods Air Bleeds Epoxy Painting winding terms in with the wind the window with the window window with the window window with the window window window with the window window window window with the window wind Rod Boots Heavy Chrome Plated Piston Rods Intermediate Center Supports Tightened Sroke Tolerance Full Face Retainer Plates MS1 Mount **Tandem Mounted Cylinders**

Contact factory for other special options.

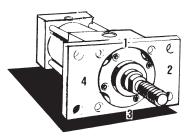
MOUNTING STYLE	
Side Lugs	
Centerline Lugs	MS3
Side Tapped	MS4
Head Square Flange	MF5
Cap Square Flange	MF6
Head Trunnion	MT1
Cap Trunnion	MT2
Intermediate Fixed Trunnion.	MT4
Head Rectangular Flange	MF1
Cap Rectangular Flange	
Tie-Rods MX0, Head Flange	MX3,MX4
Cap Flange	
Side End Lugs	
Fixed Double-Ear Clevis	
Fixed Single-Ear Clevis	
Spherical Bearing	
Double Rod (Available in mos mounting styles)	st
Double Rod End (Specify only if required)	D

SERIES

Hydraulic (Heavy Duty) 2H

CUSHION

Non-Cushion	C
Cushion, Both Ends*Cl	C
Cushion, Cap End OnlyCl	B
Cushion, Head End Only* Cl	R


*Head End Cushion on 1.5 Bore (F) Rod is non-adjustable.

When ordering a stop tube, specify actual (working) stroke and nominal stroke. State length of stop tube.

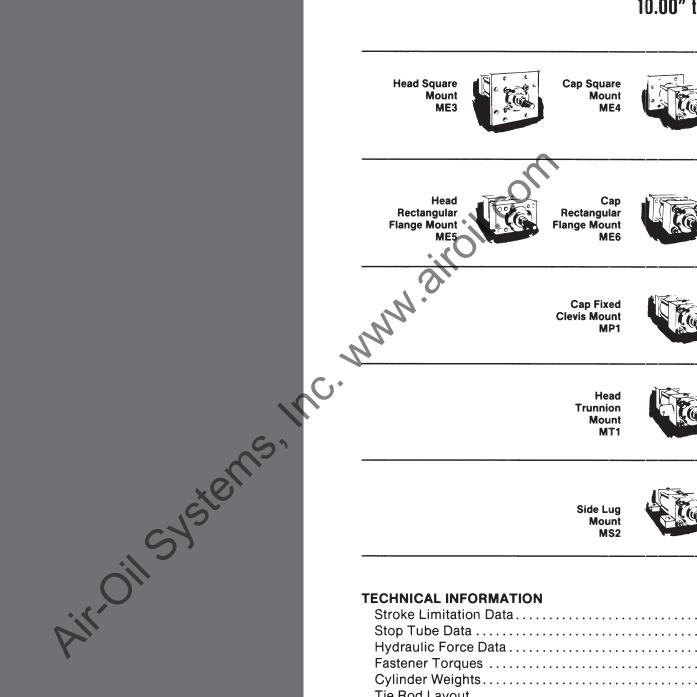
NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

HOW TO ORDER

MF1 * - 2H-0	CC-2.00"-9.00"-FSM1G	
	BORE SIZE (Specify)	ROD END STYLE Small Male SM Intermediate Male IM Short Female F* Rod End Coupling RC Alternate Male (Specify) AL Alternate Female (Specify) AL Alternate Female (Specify) SP *Special (Specify) SP *Specify rod stud if required— up thru 2" diameter piston rod up thru 2" diameter piston rod
	STROKE (Specify)	PISTON ROD PACKING, GLAND O-RING, Rod Wiper
		STANDARD—Polyurethane Packing, Buna O-Ring, Polyurethane Wiper1
		OPTIONAL —Buna Packing, O-Ring, Polyurethane Wiper 2
		OPTIONAL —Viton Packing, Viton O-Ring, Teflon Wiper3
		PISTON PACKING AND TUBE SEALS
		STANDARD—Wear Strips, Filled Teflon Seal with Buna Expander, Buna Tube SealsG
		OPTIONAL —Cast Iron Rings, Filled Teflon Seal with Buna Expander, Buna Tube SealsE
2 H		OPTIONAL —Polyurethane U-Cup Seal with Buna Tube SealsA
NC		OPTIONAL —Cast Iron Rings, Filled Teflon Seal with Viton Expander, Viton Tube SealsF
CC		OPTIONAL —Wear Strips, Filled Teflon Seal with Viton Expander, Viton Tube Seals
CR re (F)	ROD DIAMETER (Specify Piston Rod Code from	OPTIONAL —Viton U-Cup Seal with Viton Tube SealsB
	dimensional chart)	NOTE: Cushion needles furnished with viton seals

Port location: if other than position 1, must be specified. Mounting accessories must be specified if required.

High-Tech Duralon[®] Rod Bearing ■ State-of-the-Art Rod and Piston Sealing System Heavy-Duty Piston-to-Rod Connection ■ 10.00" – 24.00" Bores ■ Rod Diameters through 12.00" ■ Pressure Ratings up to 3,000 PSI


■ 7 Mounting Styles

Air-Oil Systems, M.C. MMM. aroil. Com

Series 3H Hydraulic Cylinde

Series 3H for Heavy-Duty Service

SERIES 3H HYDRAULIC CYLINDERS

Stroke Limitation Data	12
Stop Tube Data	13
Hydraulic Force Data	14
Fastener Torques1	15
Cylinder Weights1	15
Tie Rod Layout	16
INSTALLATION, OPERATION AND MAINTENANCE DATA	17
Parts List	18
MOUNTING ACCESSORIES	20
HOW TO ORDER	21

10.00" thru 24.00" Bores

	Description	Page N	о.
	ME3	Head Square Mount104	4
	ME4	Cap Square Mount104	4
	ME5	Head Rectangular Flange Mount 106	ô
	ME6	Cap Rectangular Flange Mount 106	3
a A	MP1	Cap Fixed Clevis Mount 108	3
	MT1	Head Trunnion Mount108	3
	MS2	Side Lug Mount 11(C

Series 3H Large Bore Hydraulic Cylinders for Heavy-Duty Service

Hanna's Series 3H large bore, heavy-duty hydraulic cylinders have been designed for today's higher pressures and faster moving machinery applications.

Ruggedly built, 3H cylinders incorporate many fieldproven design features that assure trouble-free performance for millions of cycles. Included are Hanna's unique non-metallic Duralon® rod bearing and our glass-filled Teflon® O-ring energized piston seal with four bronze-filled bearing strips, which combine to eliminate metal-to-metal contact at bearing surfaces. This assures long life and extremely low friction. In addition, it makes Series 3H cylinders the most suitable units available for applications that demand ruggedness, precision, zero leakage and day-in, day-out performance.

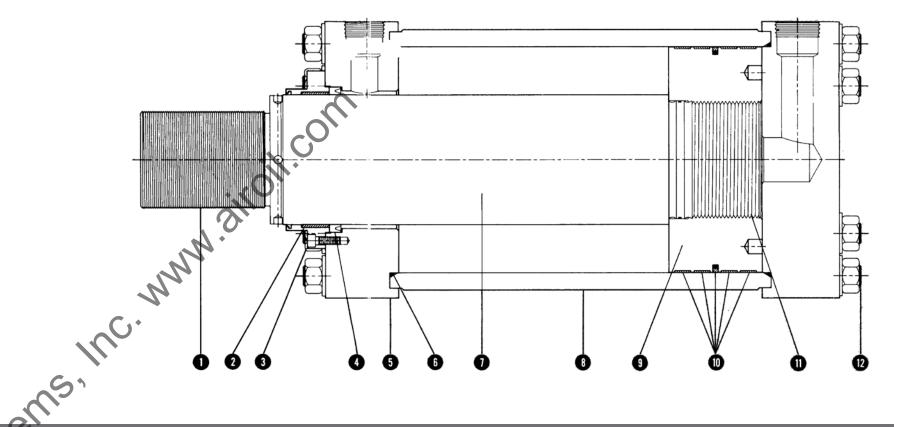
Very affordably priced, Series 3H cylinders offer outstanding value for many large bore (10.00" through 24.00"*) hydraulic cylinder applications. Developed for pressure ratings up to 3000 p.s.i., 3H cylinders are available in seven mounting styles. S.A.E. flange porting is available.

* Consult factory for special requirements.

Duralon is a Trademark of Rexnord, Inc. Teflon and Dacron are Trademarks of DuPont Company

1. Piston Rod End Integral thread construction, precision-machined for close concentricity.

2. Duralon Rod Bearing


Hanna's high-tech Duralon rod bearing is designed to perform under poorly lubricated, high-load conditions. The exact combination of woven teflon and Dacron®, plus the fiberglass structural shell increases load-carrying capabilities and eliminates "cold-flow" associated with Teflon. Duralon bearings are capable of sustaining much higher compressive loads than other materials commonly used for bearings, have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

3. Rod Bearing Cartridge Construction

One-piece, bolted-on retainer design. Packings may be captive in the cartridge or located in the head.

4. Rod Seal

Series 3H cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance. Viton U-cup is available for use with non-petroleum based fluids or for higher temperature service.

5. Heads

Steel heads are precision-machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

6. Tube Seal

Buna-N O-ring seal. Viton available for use with nonpetroleum based fluids, or for higher temperature service.

7. Piston Rod

Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failure. The rods provide 59,000 average yield strength. All sizes are hard chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish.

8. Tubing

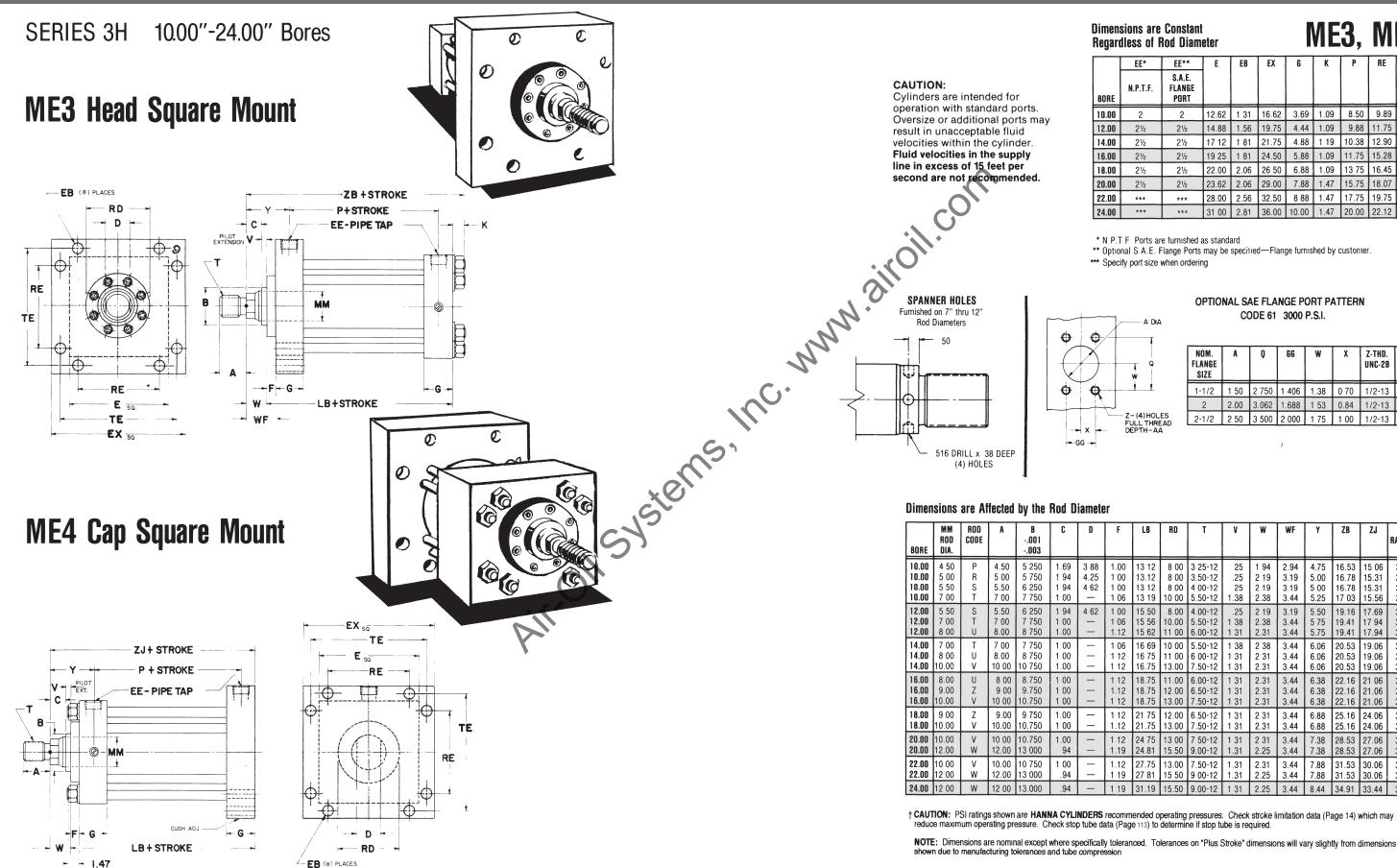
Steel tubing is precision-honed to a 16-20 micro-inch finish for close tolerance between piston bearing and tube wall.

9. Piston

One-piece piston of high impact-resistant ductile iron threaded to piston rod, and furnished with breakaway spirals on each side.

10. Piston Sealing System

Hanna's glass-filled Teflon, O-ring energized piston seal provides a positive seal without problems such as rollover or extrusion that are associated with other type seals. Bronze-filled bearing strips provide non-metallic bearing points on the piston, assuring long life and extremely low friction.


11. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.

12. Tie Rods

Made from high-strength steel, the tie rods are pre-stressed for fatigue resistance.

Series 3H Hydraulic Cylinders

Dimensions are Constant Regardless of Rod Diameter

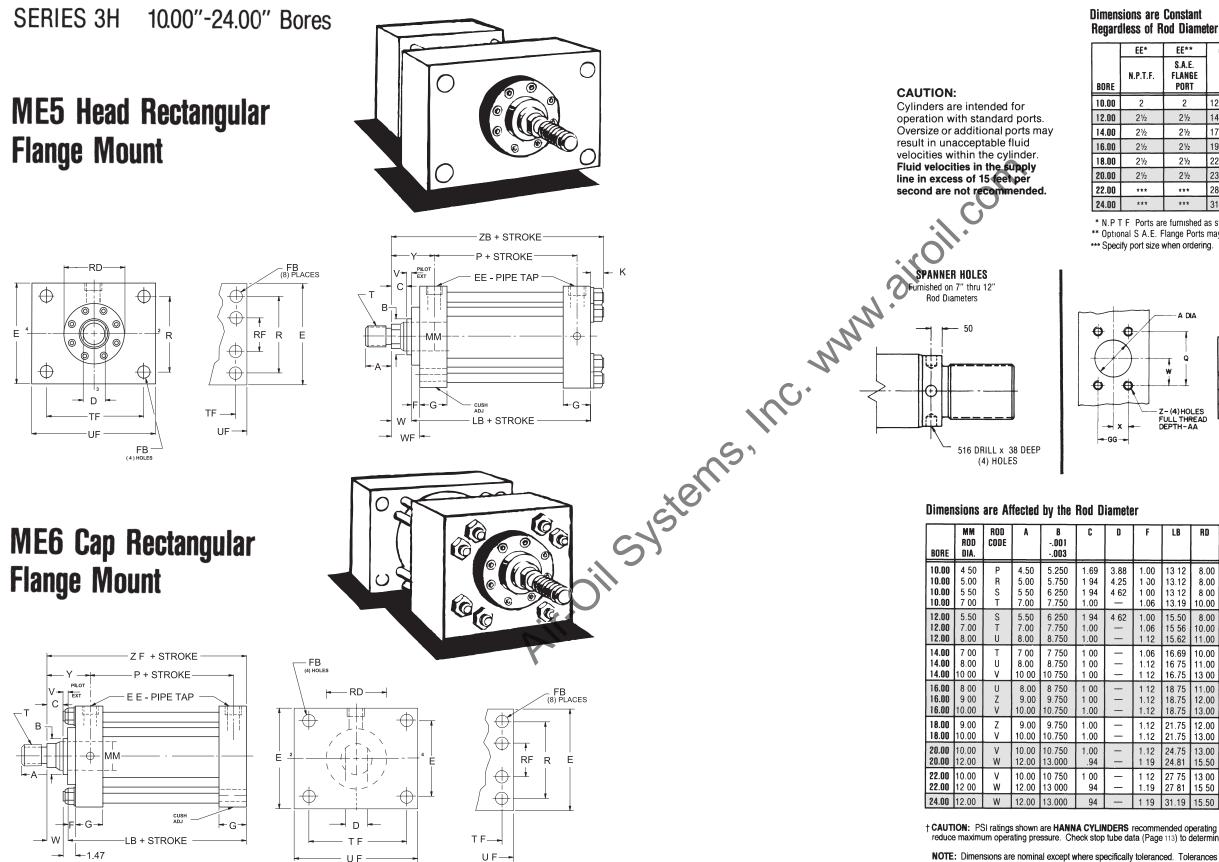
ME3, **ME4**

EE*	EE**	E	EB	EX	6	K	Р	RE	TE
N.P.T.F.	S.A.E. Flange Port								
2	2	12.62	1 31	16.62	3.69	1.09	8.50	9.89	14 13
21/2	21/2	14.88	1.56	19.75	4.44	1.09	9.88	11.75	16.79
21/2	21/2	17 12	1 81	21.75	4.88	1 19	10.38	12.90	18.43
21/2	21/2	19 25	1 81	24.50	5.88	1.09	11.75	15.28	21.03
21/2	21/2	22.00	2.06	26 50	6.88	1.09	13 75	16.45	22.65
21/2	21/2	23.62	2.06	29.00	7.88	1.47	15.75	18.07	24.87
***	***	28.00	2.56	32.50	8 88	1.47	17.75	19.75	27.38
***	***	31 00	2.81	36.00	10.00	1.47	20.00	22.12	31.25
	N.P.T.F. 2 2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂ ***	S.A.E. FLANGE PORT 2 2 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½ 2½	S.A.E. FLANSE PORT S.A.E. FLANSE PORT 2 2 12.62 2½ 2½ 14.88 2½ 2½ 17.12 2½ 2½ 19.25 2½ 2½ 22.00 2½ 2½ 23.62 **** **** 28.00	S.A.E. FLAMSE PORT S.A.E. FLAMSE PORT Image: Constraint of the symbol of the symbol o	S.A.E. PDRT S.A.E. FLANGE PORT Image: Constraint of the symbol symbol symbol s	Image: Second system S.A.E. FLANGE PORT Image: Second system Image: Seco	L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	Image: SAE. SAE. Image: SAE.	Image: Sale point Image: Sale point

* N P.T F Ports are furnished as standard

** Optional S A.E. Flange Ports may be specified-Flange furnished by customer *** Specify port size when ordering

- Z- (4) HOLES FULL THREAD DEPTH-AA


OPTIONAL SAE FLANGE PORT PATTERN CODE 61 3000 P.S.I.

NOM. Flange Size	A	Q	66	W	X	Z-THD. UNC-2B	AA Min.
1-1/2	1 50	2 750	1 406	1.38	0 70	1/2-13	1.06
2	2.00	3.062	1.688	1 53	0.84	1/2-13	1.06
2-1/2	2 50	3 500	2 000	1 75	1 00	1/2-13	1.19

	LB	RD	T	V	W	WF	Y	ZB	ZJ	PSI Rating†
)0	13 12	8 00	3 25-12	25	1 94	2.94	4.75	16.53	15 06	3000
)0	13.12	8 00	3.50-12	.25	2 19	3.19	5.00	16.78	15.31	3000
)0	13 12	8 00	4 00-12	25	2 19	3.19	5.00	16.78	15.31	3000
)6	13 19	10 00	5.50-12	1.38	2.38	3.44	5.25	17 03	15.56	3000
)0	15 50	8.00	4.00-12	.25	2 19	3.19	5.50	19.16	17.69	3000
)6	15 56	10.00	5.50-12	1 38	2.38	3.44	5 75	19.41	17 94	3000
2	15 62	11 00	6.00-12	1 31	2.31	3.44	5.75	19.41	17.94	3000
)6	16 69	10 00	5.50-12	1 38	2 38	3.44	6.06	20.53	19.06	3000
2	16 75	11 00	6 00-12	1 31	2 31	3.44	6.06	20.53	19.06	3000
2	16.75	13.00	7.50-12	1 31	2.31	3.44	6.06	20.53	19.06	3000
2	18.75	11.00	6.00-12	1 31	2.31	3.44	6.38	22.16	21 06	3000
2	18.75	12.00	6.50-12	1 31	2.31	3.44	6.38	22.16	21.06	3000
2	18.75	13.00	7.50-12	1 31	2.31	3.44	6.38	22.16	21.06	3000
2	21 75	12.00	6.50-12	1 31	2 31	3.44	6.88	25.16	24.06	3000
2	21.75	13.00	7.50-12	1 31	2.31	3.44	6.88	25.16	24.06	3000
2	24 75	13 00	7 50-12	1 31	2 31	3.44	7.38	28.53	27.06	3000
9	24.81	15.50	9.00-12	1.31	2.25	3.44	7.38	28.53	27.06	3000
2	27.75	13.00	7.50-12	1.31	2.31	3.44	7.88	31.53	30.06	3000
9	27 81	15 50	9 00-12	1.31	2.25	3.44	7.88	31.53	30.06	3000
9	31.19	15.50	9.00-12	1 31	2.25	3.44	8.44	34.91	33.44	3000

† CAUTION: PSI ratings shown are HANNA CYLINDERS recommended operating pressures. Check stroke limitation data (Page 14) which may

Series 3H Hydraulic Cylinders

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

Series 3H Hydraulic Cylinders

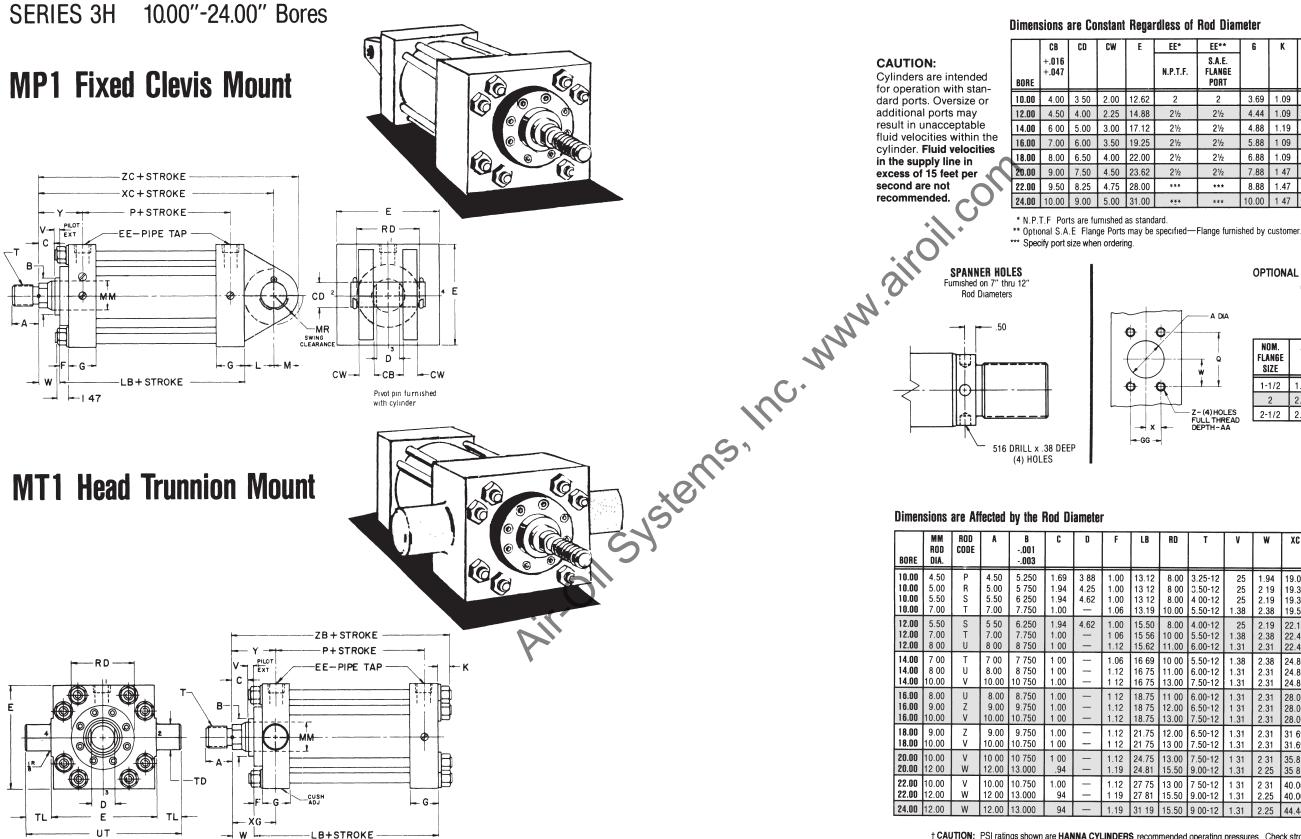
ME5, ME6

EE**	E	FB	6	K	Р	R	RF	TF	UF
S.A.E. Flange Port					006				
2	12 62	1.81	3.69	1.09	8.50	9.62	-	15.88	19.00
21/2	14.88	2.06	4.44	1.09	9.88	11 45	-	18.50	22.00
21/2	17.12	2 31	4.88	1.19	10.38	13.25	—	21.00	25.00
21/2	19.25	1.81	5.88	1.09	11.75	15.62	5.21	22.88	26.50
21/2	22 00	2.06	6.88	1.09	13.75	17.88	5.96	26.12	30 25
21/2	23 62	2.06	7.88	1.47	15.75	19 50	6.50	27.75	31.88
***	28.00	2.56	8.88	1.47	17 75	22.88	7.62	33.12	38.25
***	31.00	2.81	10.00	1 47	20.00	25.38	8.46	36.62	42.25

* N.P T F Ports are furnished as standard.

** Optional S A.E. Flange Ports may be specified-Flange furnished by customer

OPTIONAL SAE FLANGE PORT PATTERN CODE 61 3000 P.S.I.



NOM. Flange Size	A	Q	66	W	X	Z-THD. UNC-2B	AA Min.
1-1/2	1.50	2.750	1.406	1.38	0 70	1/2-13	1.06
2	2.00	3.062	1 688	1 53	0.84	1/2-13	1.06
2-1/2	2.50	3 500	2.000	1 75	1.00	1/2-13	1.19

Z-(4)HOLES FULL THREAD DEPTH-AA

	LB	RD	T	V	W	WF	Ŷ	ZB	ZJ	PSI Rating†
)	13 12	8.00	3.25-12	.25	1.94	2.94	4.75	16.53	15.06	3000
)	13.12	8.00	3.50-12	25	2 19	3.19	5.00	16.78	15.31	3000
)	13 12	8 00	4 00-12	25	2 19	3.19	5.00	16 78	15.31	3000
;	13.19	10.00	5.50-12	1.38	2.38	3.44	5.25	17 03	15.56	3000
)	15.50	8.00	4.00-12	25	2 19	3 19	5.50	19.16	17.69	3000
	15 56	10.00	5.50-12	1.38	2.38	3 44	5.75	19.41	17.94	3000
	15.62	11.00	6.00-12	1.31	2.31	3.44	5.75	19.41	17.94	3000
)	16.69	10.00	5.50-12	1.38	2.38	3.44	6.06	20.53	19.06	3000
)	16 75	11.00	6.00-12	1.31	2 31	3 44	6.06	20.53	19.06	3000
)	16.75	13 00	7 50-12	1 31	2.31	3 44	6.06	20.53	19.06	3000
)	18 75	11.00	6.00-12	1.31	2 31	3.44	6.38	22 16	21 06	3000
	18.75	12.00	6.50-12	1.31	2.31	3.44	6.38	22.16	21.06	3000
	18.75	13.00	7.50-12	1.31	2.31	3.44	6.38	22.16	21.06	3000
2	21.75	12.00	6.50-12	1 31	2.31	3.44	6.88	25.16	24.06	3000
	21.75	13.00	7.50-12	1.31	2.31	3.44	6.88	25.16	24.06	3000
2	24.75	13.00	7.50-12	1.31	2.31	3.44	7.38	28.53	27.06	3000
	24.81	15.50	9.00-12	1.31	2.25	3.44	7.38	28.53	27.06	3000
2	27 75	13 00	7 50-12	1 31	2 31	3.44	7 88	31 53	30.06	3000
	27 81	15 50	9.00-12	1.31	2.25	3.44	7.88	31.53	30.06	3000
)	31.19	15.50	9 00-12	1 31	2 25	3.44	8 4 4	34 91	33.44	3000

† CAUTION: PSI ratings shown are HANNA CYLINDERS recommended operating pressures. Check stroke limitation data (Page 14) which may reduce maximum operating pressure. Check stop tube data (Page 113) to determine if stop tube is required.

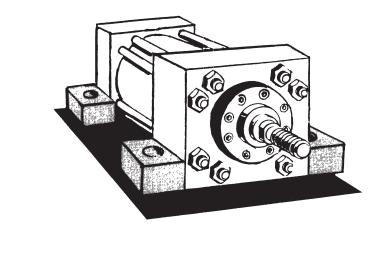
† CAUTION: PSI ratings shown are HANNA CYLINDERS recommended operating pressures. Check stroke limitation data (Page 14) which may uce maximum operating pressure. Check stop tube data (Page 113) to determine if stop tube is required.

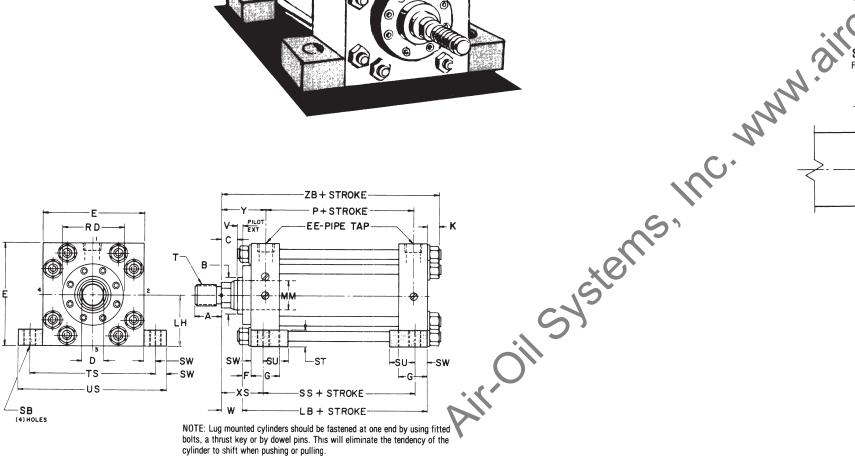
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

Series 3H Hydraulic Cylinders

MP1, MT1

-											
	EE*	EE**	6	K	L	м	MR	P	TD	TL	UT
	N.P.T.F.	S.A.E. Flange Port							+.000 002		
)	2	2	3.69	1.09	4.00	3 50	3.62	8.50	3.50	3.50	19.62
}	21/2	21/2	4.44	1.09	4.50	4.00	4.12	9.88	4.00	4.00	22.88
2	21/2	21/2	4.88	1.19	5.75	5.00	5.12	10.38	5.00	5.00	26.12
5	21/2	21/2	5.88	1 09	7.00	6.00	6.25,	11.75	5.00	5.00	29.25
)	21/2	21/2	6.88	1.09	7.62	6.50	6.75	13.75	6.00	6.00	33.50
2	21/2	21/2	7.88	1 47	8.75	7.50	7.75	15.75	7.00	7.00	36.12
)	***	***	8.88	1.47	10.00	8.00	8.25	17.75	8.00	8.00	43.00
)	+ž+	***	10.00	1 47	11.00	9.00	9.25	20.00	9.00	9.00	49.00


OPTIONAL SAE FLANGE PORT PATTERN CODE 61 3000 P.S.I.


NOM. Flange Size	A	Q	66	W	X	Z-THD. UNC-2B	AA Min.
1-1/2	1.50	2 750	1.406	1.38	0.70	1/2-13	1.06
2	2.00	3.062	1.688	1.53	0.84	1/2-13	1.06
2-1/2	2.50	3.500	2.000	1 75	1.00	1/2-13	1.19

	RD	T	V	W	XC	XG	Ŷ	ZB	ZC	PSI R	ATING†
										MP1	MT1
2 2 2 9	8.00 8 00 8.00 10.00	3.25-12 3.50-12 4 00-12 5.50-12	25 25 25 1.38	1.94 2 19 2.19 2.38	19.06 19.31 19.31 19.56	4.75 5 00 5.00 5.25	4.75 5.00 5.00 5.25	16.53 16.78 16.78 17.03	22.56 22.81 22.81 23.06	3000 3000 3000 3000	1365 1365 1365 1365 1365
50	8.00	4.00-12	25	2.19	22.19	5.38	5 50	19 16	26.19	3000	1250
56	10 00	5.50-12	1.38	2.38	22.44	5.62	5.75	19.41	26.44	3000	1250
52	11.00	6.00-12	1.31	2.31	22.44	5.62	5.75	19.41	26.44	3000	1250
9	10 00	5.50-12	1.38	2.38	24.81	5.81	6.06	20.53	29.81	3000	1150
'5	11.00	6.00-12	1.31	2.31	24.81	5.81	6.06	20.53	29.81	3000	1150
'5	13.00	7.50-12	1.31	2.31	24.81	5.81	6.06	20.53	29.81	3000	1150
'5	11 00	6.00-12	1.31	2.31	28.06	6.38	6.38	22.16	34.06	3000	1100
'5	12.00	6.50-12	1 31	2.31	28.06	6.38	6 38	22.16	34.06	3000	1100
'5	13.00	7.50-12	1.31	2.31	28.06	6.38	6.38	22.16	34.06	3000	1100
'5	12.00	6.50-12	1.31	2.31	31 69	6.88	6.88	25 16	38.19	3000	1250
'5	13 00	7.50-12	1.31	2.31	31.69	6.88	6.88	25.16	38.19	3000	1250
'5	13.00	7.50-12	1 31	2 31	35.81	7 38	7.38	28 53	43 31	3000	1365
1	15.50	9.00-12	1.31	2 25	35 81	7.38	7.38	28.53	43.31	3000	1365
5	13 00	7 50-12	1 31	2 31	40.06	7.88	7.88	31.53	48.06	3000	1475
1	15.50	9.00-12	1.31	2.25	40.06	7.88	7 88	31.53	48.06	3000	1475
9	15.50	9 00-12	1.31	2.25	44.44	8.44	8.44	34.91	53.44	3000	1575

SERIES 3H 10.00"-24.00" Bores

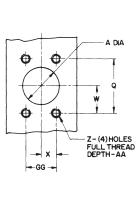
MS2 Side Lug Mount

Dimensions are Constant Regardless of Rod Diameter

CAUTION:

Cylinders are intended for operation with standard ports. Oversize or additional ports may result in unacceptable fluid velocities within the cylinder. Fluid velocities in the supply line in excess of 15 feet per second are not recommended.

SPANNER HOLES


urnished 7" thru 12"

Rod Diameters

50

ſ		E	EE*	EE**	6	K	LH	P	SB	SS	ST	SU	SW	TS	US
	BORE		N.P.T.F.	S.A.E. Flange Port			000 006								
ľ	10.00	12.62	2	2	3.69	1.09	6.312	8.50	1.56	8.88	2.19	3 50	1.62	15.88	19.12
ĺ	12.00	14 88	21/2	21/2	4.44	1.09	7.437	9.88	1.56	10.50	2.94	4.25	2.00	18.88	22.88
Į	14.00	17.12	21/2	21/2	4.88	1.19	8.562	10.38	2.31	11.12	3.94	4.75	2.25	21.62	26.12
I	16.00	19.25	21/2	21/2	5.88	1.09	9.625	11.75	2.56	12.12	4.50	3.12	2.75	24.75	30.25
I	18.00	22.00	21/2	21/2	6.88	1.09	11.000	13.75	2.81	14.12	5.25	3.62	3.25	28.50	35 00
1	20.00	23.62	21/2	21/2	7.88	1.47	11.812	15.75	3.06	15.88	6.50	4.00	3.88	31.38	39.12
l	22.00	28.00	***	***	8.88	1 47	14.000	17.75	3.31	18.12	7.25	4.62	4.25	36.50	45.00
	24.00	31 00	***	***	10.00	1 47	15.500	20.00	3.56	19.75	8.00	4.88	5.12	41 25	51.50

* N.P.T F Ports are furnished as standard ** Optional S.A.E Flange Ports may be specified-Flange furnished by customer. *** Specify port size when ordering.

Dimensions are Affected by the Rod Diameter

516 DRILL x 38 DEEP (4) HOLES

BORE	MM ROD DIA.	ROD CODE	A	B 001 003	C	D	F	LB	RD	T	V	W	XS	Y	ZB	PSI Rating†
10.00 10.00 10.00 10.00	4.50 5.00 5.50 7.00	P R S T	4 50 5 00 5 50 7 00	5 250 5 750 6 250 7.750	1 69 1 94 1 94 1 00	3.88 4.25 4 62 —	1.00 1.00 1.00 1.06	13.12 13.12 13 12 13.19	8.00 8.00 8.00 10.00	3.25-12 3.50-12 4.00-12 5.50-12	.25 25 25 1 38	1.94 2 19 2 19 2 38	4.56 4.81 4 81 5 06	4.75 5.00 5.00 5 25	16.53 16.78 16.78 17.03	3000 3000 3000 3000
12.00 12.00 12.00	5.50 7.00 8 00	S T U	5 50 7.00 8 00	6.250 7 750 8 750	1.94 1.00 1.00	4 62 	1 00 1.06 1.12	15 50 15 56 15.62	8.00 10.00 11 00	4.00-12 5.50-12 6.00-12	.25 1 38 1 31	2.19 2 38 2 31	5.19 5.44 5.44	5.50 5.75 5 75	19 16 19.41 19.41	3000 3000 3000
14.00 14.00 14.00	7 00 8 00 10.00	T U V	7 00 8 00 10.00	7.750 8.750 10 750	1 00 1 00 1 00		1 06 1 12 1 12	16.69 16 75 16 75	10.00 11.00 13 00	5 50-12 6.00-12 7.50-12	1.38 1.31 1.31	2.38 2 31 2.31	5.69 5.69 5.69	6.06 6.06 6.06	20 53 20.53 20.53	3000 3000 3000
16.00 16.00 16.00	8 00 9 00 10.00	U Z V	8.00 9.00 10.00	8 750 9.750 10 750	1.00 1.00 1.00	 	1.12 1.12 1.12	18.75 18.75 18 75	11 00 12.00 13.00	6.00-12 6.50-12 7.50-12	1.31 1.31 1 31	2 31 2 31 2.31	6.19 6 19 6.19	6.38 6.38 6.38	22.16 22.16 22.16	3000 3000 3000
18.00 18.00	9 00 10.00	Z V	9.00 10 00	9.750 10 750	1.00 1.00		1 12 1.12	21.75 21.75	12 00 13 00	6.50-12 7 50-12	1.31 1.31	2 31 2.31	6 69 6.69	6.88 6.88	25.16 25.16	3000 3000
20.00 20.00	10 00 12.00	V W	10 00 12 00	10.750 13.000	1.00 .94	_	1 12 1 19	24 75 24.81	13.00 15.50	7.50-12 9.00-12	1 31 1.31	2 31 2.25	7.31 7 31	7.38 7 38	28 53 28.53	3000 3000
	10 00 12 00	V W	10 00 12.00	10.750 13.000	1 00 94		1 12 1 19	27.75 27.81	13 00 15 50	7.50-12 9.00-12	1 31 1.31	2.31 2.25	7.69 7.69	7.88 7.88	31.53 31.53	3000 3000
24.00	12.00	W	12.00	13.000	.94		1 19	31 19	15.50	9.00-12	1 31	2.25	8.56	8.44	34 91	3000

† CAUTION: PSI ratings shown are HANNA CYLINDERS recommended operating pressures. Check stroke limitation data (Page 14) which may reduce maximum operating pressure. Check stop tube data (Page 113) to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

Series 3H Hydraulic Cylinders

M	S2

OPTIONAL SAE FLANGE PORT PATTERN CODE 61 3000 P.S.I.

NOM. Flange Size	A	Q	66	W	X	Z-THD. UNC-2B	AA Min.
1-1/2	1.50	2 750	1.406	1 38	0.70	1/2-13	1 06
2	2.00	3 062	1 688	1.53	0.84	1/2-13	1.06
2-1/2	2 50	3 500	2.000	1 75	1.00	1/2-13	1 19

TECHNICAL INFORMATION

STROKE LIMITATION DATA

The rod diameter has to be capable of withstanding any compressive force developed by the cylinder working against the load. A piston rod diameter with adequate column strength to handle the compressive force of the application can be selected from the convenient precalculated chart below.

To use this chart find the force value, developed by the application, in the left column. Next, select the figure which resembles your application and then multiply "D" times the factor given in that figure. Finally, opposite the corresponding force value, find the value of "L" which is equal to, or greater than, the figure derived from factoring "D". Directly above is the rod diameter which is capable of withstanding the forces developed in the application.

EXAMPLE: Cylinder Bore = 10.00" Operating PSI = 3000 Force Value 235,620 lbs. Application - Resembles Fig. 2 - Foot Lug Mtg. Stroke = 98" "L" = 0.7 x 98; L = 69" Correct Rod Diameter = 4,50"

The total force is 235,620 lbs., and the value of "L" is 69 inches in this application. The smallest diameter rod capable of handling this situation is 4.50 inches.

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of "D".

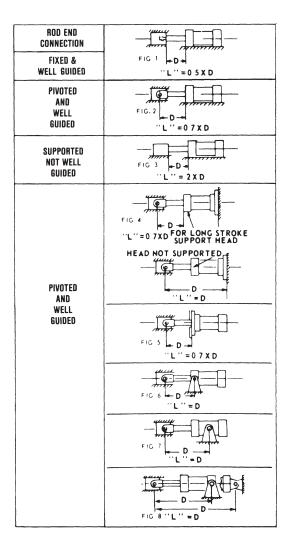
FORCE		\	ALUE	OF "L"	IN INC	HES		
VALUE			PISTO	ROD	DIAME	TER		
in pounds	4.50	5.00	5.50	7.00	8.00	9.00	10.00	12.00
20000	244	301	364					
40000	172	213	253	417				
60000	141	174	210	341	445			
80000	122	151	182	295	385	488	T	
100000	109	135	163	264	345	436		
120000	100	123	149	241	315	398	492	
140000	92	114	138	223	291	369	455	
160000	86	106	129	209	272	345	426	
200000	77	95	115	187	244	309	381	
250000	69	85	103	167	218	276	341	490
300000	1			152	199	252	311	448
350000			1	141	184	233	288	415
400000	1		1	132	172	218	269	388
500000			1		154	195	241	347
600000	1		1	1	141	173	220	317
700000	1					165	204	293
800000	1		1	1		154	190	274
900000				1	1		180	258
1000000		1					170	245
1100000		1					162	234
1200000							155	224
1300000						1		215
1400000		<u>† </u>				1	1	207

NOTE: SEE APPLICATION FIGURES ON NEXT PAGE.

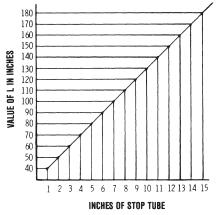
STOP TUBE DATA

Long stroke cylinders can be subjected to a buckling action and excessive bearing wear due to the weight of the exposed rod. To reduce wear a stop tube is recommended.

To determine if a stop tube is required, find the total value of "L" using the stroke limitation chart. Compare this value with the stop tube chart. If the value of "L" exceeds 40 inches, you can find the recommendation for stop tube length at the bottom of the chart.


EXAMPLE PROBLEM: Cylinder Model MP1-3H-NC-10.00 x 27.00 - PSM-1G Accessory - V-10 Clevis Pressure - 2000 PSI Clevis Mount - Horizontal

From the description, the cylinder falls into Fig. 8. To determine the value of the


ADD:	MP1 "XC" Dimension V-10 "CE" Dimension Two times stroke (2 x 27)	19.06" 8.50" 54"
L.	Total Value of "L"	81.56"

Nooking this up on the chart, you'll find a recommended stop tube length of 6 inches.

The amount of stop tube will increase the stroke-plus dimensions of the cylinder by the same value. Add length of the stop tube to the value of "L" and recheck column strength on stroke limitation chart.

Series 3H Hydraulic Cylinders

Chart C1

HYDRAULIC FORCE DATA

WHAT BORE SIZE DO YOU NEED?

The force required for the application will be known in most cases. You can make your cylinder bore selection in either of two ways:

- (1) Arbitrarily select a cylinder bore diameter which you feel would be economical for the application and then determine the pump required to produce the flow rate and pressure rating to mate with the cylinder.
- (2) Select the pump and other system components and then determine the cylinder bore which will mate them to accomplish the work. The latter method seems to be the most widely used.

Regardless of the method chosen, the formula for determining the force produced by a cylinder is:

F = A X PSI

Force (Ibs) = Cylinder Piston Area (sq in) X Line Pressure (lbs/sq in)

Chart C1 shows the force produced by specific cylinder bore sizes at various pressures. Forces not listed on the chart can be calculated by using the formula given (F = A X PSI). An example of this formula is provided.

HYDRAULIC CYLINDER FORCE CHART*

Cyl.	Piston					STROKE Pounds of Force	I			Gallons of Oil Consumed
Bore	Area Sq. In.	250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	2500 PSI	3000 PSI	Per Inch of Travel
10.00	78 54	19640	39270	58900	78540	117800	157100	196350	235620	.3393
12.00	113.10	28280	56550	84820	113100	169600	226200	282750	339300	.4886
14.00	153.94	38480	76970	115455	153940	230910	307880	384850	461820	6664
16 00	201.06	50270	100530	150800	201060	301590	402120	502650	603180	.8686
18.00	254.47	63620	127240	190850	254470	381710	508940	636180	763410	1 0993
20.00	314.16	78540	157080	235620	314160	471240	628320	785400	942480	1 3572
22.00	380.13	95030	190070	285100	380130	570200	760260	950330	1140390	1 6422
24.00	452.39	113100	226200	3:39290	452390	678590	904780	1130980	1357170	1 9543

Force Cylinder Piston Area Line Pressure X (in square inches) (pounds) (in pounds per sq. in.) EXAMPLE: Determine the thrust of a 14.00 inch bore cylinder operating at 1000 psi hydraulic line pressure $F = 153.94 \times 1000 F = 153940$

Chart C1A

Unart Of	<u></u>									
Rod	Rod	PULL STROKE To determine pull stroke thrust or consumption, deduct the value for the rod diameter from the corresponding cylinder bore in Charl C1.								Gallons of Oil Consumed
Dia.	Area	250	500	750	1000	1500	2000	2500	3000	Per Inch of
	Sq. In.	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	Travel
4.50	15 90	3976	7952	11930	15900	23860	31810	38200	47750	.0688
5 00	19 63	4909	9820	14730	19640	29450	39270	49085	58900	.0860
5 50	23 76	5940	11880	17820	23760	35640	47575	59250	71250	1028
6.00	28 27	7068	14140	21200	28270	42400	56540	70685	84820	1224
7.00	38 49	9623	19240	28870	38490	57740	76980	96210	115450	.1666
8 00	50.26	12570	25140	37700	50270	75400	100500	125660	150800	2176
9 00	63.62	15905	31810	47715	63620	95430	127240	159050	190860	.2754
10 00	78 54	19635	39270	58905	78540	117810	157080	196350	235620	3400
12 00	113 10	28275	56550	84825	113100	169650	226200	282750	339300	4897

To obtain forces not given, multiply piston area times operating pressure

* Forces given do not allow for frictional or other power losses

1 U S Gallon = 231 Cubic Inches

COMPARE PRESSURE RATINGS

Chart C2 shows the pressure ratings for Hanna Series 3H Hydraulic Cylinders, and may help you determine the most economical model for your application.

Hydraulic Cylinders equipped with stainless steel piston rods have reduced Pressure Ratings due to the lower strength properties of stainless steel. Consult Factory for specific Ratings.

* Ratings are based on the yield point of the weakest component and smallest rod size. See mounting pages for maximum recommended operating pressure

TORQUE

600 ft-lbs

600 ft-lbs

850 ft-lbs

600 ft-lbs

600 ft-lbs

1500 ft-lbs

1500 ft-lbs

1500 ft-lbs

		FAST	ENER	T
	N	1	3H SERIES TIE ROD TORQI	
	<u>ر</u> .	BORE	SIZE	<u> </u>
- \		10 00	1 12-12	6
_		12.00 14.00	1 12-12 1 25-12	6
		16 00	1 12-12	8
-		18 00	1 12-12	6
		20 00	1 50-12	15
		22 00	1 50-12	15
re		24 00	1 50-12	15
re sten				

BEAI	• •	SERIES Ly screw toi	RQUES
BORE	ROD	SCREW SIZE	TORQUE
10.00	P, R, S	500-20	75 ft-lbs
10 00	T	438-20	50 ft-lbs
12 00	S, U	500-20	75 ft-lbs
12 00	Т	438-20	50 ft-lbs
14 00	Т	438-20	50 ft-lbs
14 00	U, V	500-20	75 ft-lbs
16 00	U	500-20	75 ft-lbs
16 00	Z, V	500-20	75 ft-lbs
18.00	Z	500-20	75 ft-lbs
18.00	V	625-18	100 ft-lbs
20 00	V	500-20	75 ft-lbs
20 00	W	625-18	100 ft-lbs
22 00	V	500-20	75 ft-lbs
22 00	W	625-18	100 ft-lbs
24 00	V	625-18	100 ft-lbs

CYLINDER WEIGHTS

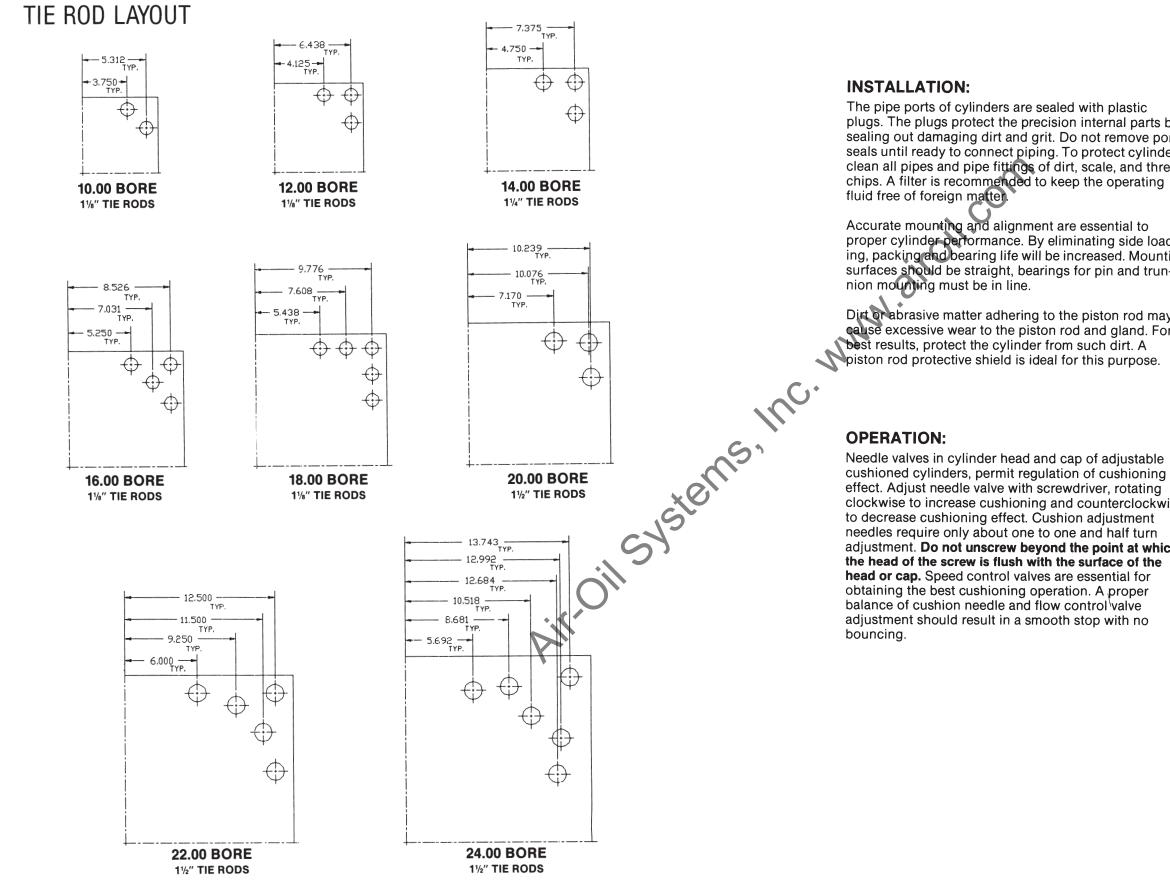

	3H SERIES	
CYLINDER Bore	BASE WEIGHT At Zero Stroke	WEIGHT PER INCH OF STROKE
10.00	510 lbs	16.0 lbs.
12.00	985 lbs	22 0 lbs
14 00	1375 lbs	29 0 lbs
16 00	1700 lbs	42 0 lbs
18 00	2560 lbs	51 0 lbs
20 00	3425 lbs	57 0 lbs
22.00	5275 lbs	85 0 lbs
24 00	7200 lbs	91.0 lbs

Chart C2

3H HYDRAULIC CYLINDER RATING* (P.S.I.)

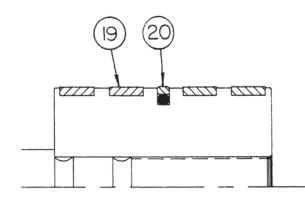
Bore	3:1 Factor of Safety	4:1 Factor of Safety
10.00	2400	1800
12.00	2600	1950
14.00	2570	1930
16.00	2420	1815
18.00	2420	1815
20.00	2200	1650
22.00	2680	2010
24.00	3060	2300

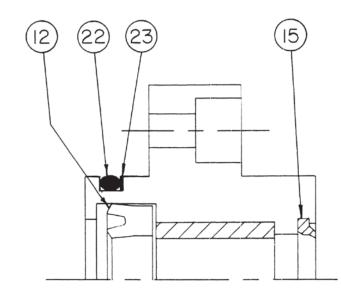
Series 3H Hydraulic Cylinders

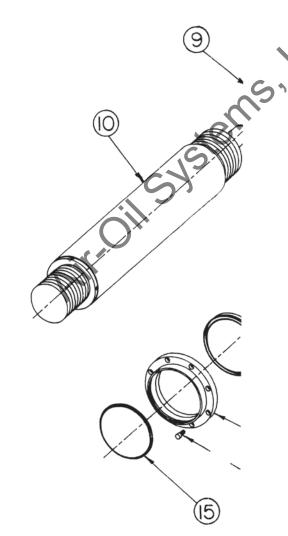
INSTALLATION, OPERATION AND MAINTENANCE DATA

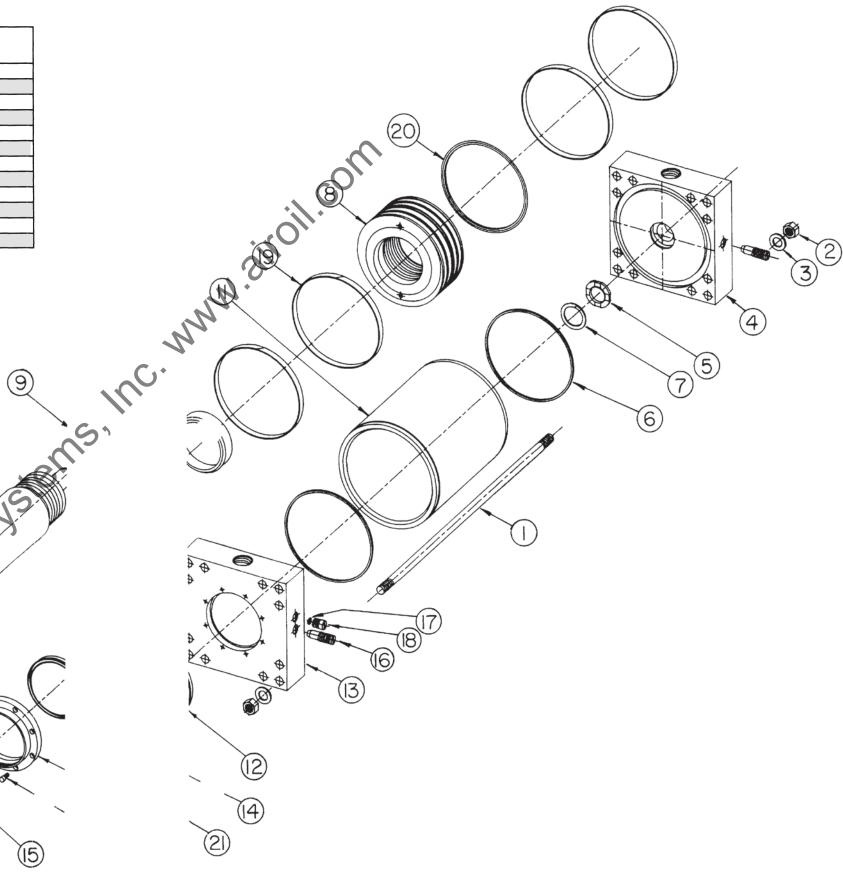
MAINTENANCE:

by ort	Parts which may need replacement in the course of normal use are the rod wiper and the packings for the piston rod.
ders, read }	The need for replacement of the piston rod packing will become evident through the escaping of fluid around the bearing assembly.
ad- nting n- ay or	To replace rod wiper or rod packings, remove the rod bearing assembly from the cylinder. To remove the assembly, unbolt all screws (Part No. 21). Reinsert two screws in the two tapped holes provided in the bearing assembly flange (Part No. 14), turning the screws until the bearing assembly is forced away from the head. Remove worn wiper and rod packing. To reassemble, slip new rod wiper and rod packing into grooves. Care should be exercised not to nick the lips of the packings. Be sure to retorque bearing assembly screws to the specified torque for the cylinder.
	For any service beyond replacement of rod packing and rod wiper, we strongly recommend returning the cylinder to the factory for any required service.
e g wise ich	If the cylinder fails to perform the job for which it is ordered, check the following items: 1. That the correct cylinder diameter has been chosen to do the job required. 2. That there is adequate line pressure at the cylinder, under both static and dynamic conditions. 3. That the piston rod is aligned correctly with the load it is pushing or pulling. 4. That the piston packings or the piston rod packings are not worn, allowing pressure to escape.
	Replacement packings can be furnished quickly, if you will indicate the serial number of the cylinder as shown on the name plate, and the part name and number, as shown. The cylinder illustrated is for reference


purposes only, and does not represent any


particular model.

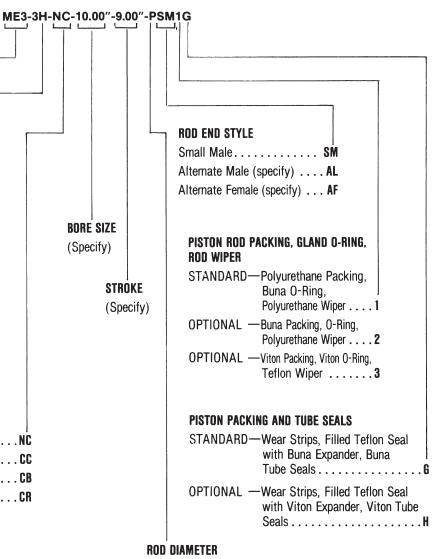



When ordering replacement parts, identify Model Number, Serial Number and Part Number, as shown below.

PART NO.	DESCRIPTION	PART NO.	DESCRIPTION
1	Tie Rod	13	Front Head
2	Tie Rod Nut	14	Bearing Assembly
3	Tie Rod Washer	15	Rod Wiper
4	Сар	16	Cushion Needle
5	Cap Cushion Float	17	Ball
6	O-Ring	18	Ball Check Plug
7	Cap Retaining Ring	19	Wear Strip
8	Piston	20	Piston Seal Ring (with Expander)
9	Cushion Sleeve	21	Socket Head Cap Screw
10	Piston Rod	22	O-Ring (Bearing Assembly)
11	Tube	23	Back-up Washer (Bearing Assembly)
12	Rod Seal		

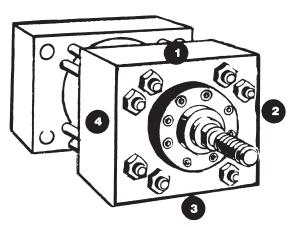
MOUNTING ACCESSORIES

These are standard accessories matched to bore size * CAUTION: and piston rod code. The Mounting Bracket fits the Accessory load rating may be lower than maximum cap end of Model MP1. The Bracket also fits the force available from cylinder. Accessories load piston Rod Clevis with the same number (i.e. B-10 ratings are in pounds. Before specifying, compare Bracket fits V-10 Rod Clevis). The pin is furnished with maximum operating pull force in pounds developed Model MP1 and fits the bracket, however, specify if by cylinder with load rating of accessory. Accessory **MOUNTING STYLE** additional pins are required. Pins also fit rod clevis load rating is the maximum recommended operating and rod eyes. If you require accessories other than load for that accessory. standard for that bore size or piston rod, specify the Head Square ME3 item number on your order. Cap Square ME4 Head Rectangular Flange ME5 **Rod Clevis Rod Eye** Cap Rectangular Flange . . ME6 Cap Fixed Clevis MP1 Head Trunnion . . MT1 - ER (SWING CLEARANCE) , CR RAD. Side Lugs MS2 Inc. www. - CD-- CD----CD +.002 CD +.004 CD+.003 REAM CF CA Hydraulic (Heavy Duty) 3H CL T (THR'DS.) HEX SIZE -cj-T (THREAD) x A (THREAD LENGTH) CUSHION ROD EYE Item No. PISTON ROD CODE *LBS. CAPACITY *LBS. Capacity ROD CLEVIS PISTON ROD CB CA CJ DIA. CL ER CD CE CR CW CB CD Cushion. Both Ends CC ITEM NO. CODE
 4.50
 4.00
 3.50
 8.50
 3.88
 2.00
 5.00
 3.25-12
 210,000

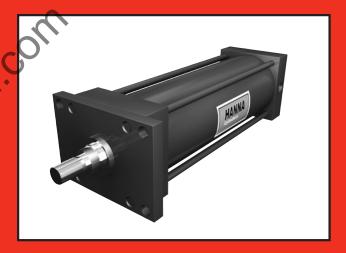

 5.50
 4.50
 4.00
 10.00
 4.38
 2.25
 6.19
 4.00-12
 270,000

 4.50
 7.62
 4.00
 3.50
 6.12
 3.50
 5.00
 3.25-12
 189,000

 5.50
 9.12
 4.50
 4.00
 7.00
 4.50
 5.75
 4.00-12
 243,000
 V-10 Y-10 Cushion, Cap End OnlyCB V-12 Y-12 Cushion, Head End OnlyCR For cushions on cylinders with bores over 14.00", Pin **Brackets** consult factory. \bigotimes \bigotimes Ø \bigotimes PIN LENGTH -CB-PIN DIA +.002 CD + 004 - DD FURNISHED WITI When ordering a stop tube, specify actual (working) stroke and nominal COTTERS stroke. State length of stop tube. NPTF ports will be furnished as standard. Optional SAE flange ports may be specified-flange furnished by customer. **3H SERIES** BRACKET DIAMETER *LBS, AA CB CE DD *LBS. PIN Item No. LENGTH Ε. CAPACITY CAPACITY BORE DIA. ITEM CAUTION: 13.604.003.50016.194.504.000 7.253.623.503.627 754.124.004.12 9.31 3.50 4.00 300,650 10 00 B-10 1 81 12.62 1.69 58,500 P10 Cylinders are intended for operation with standard ports. P12 10 31 12.00 B-12 2.06 14.88 1.94 73,250 307,850 Oversize or additional ports may result in unacceptable fluid


in excess of 15 feet per second are not recommended.

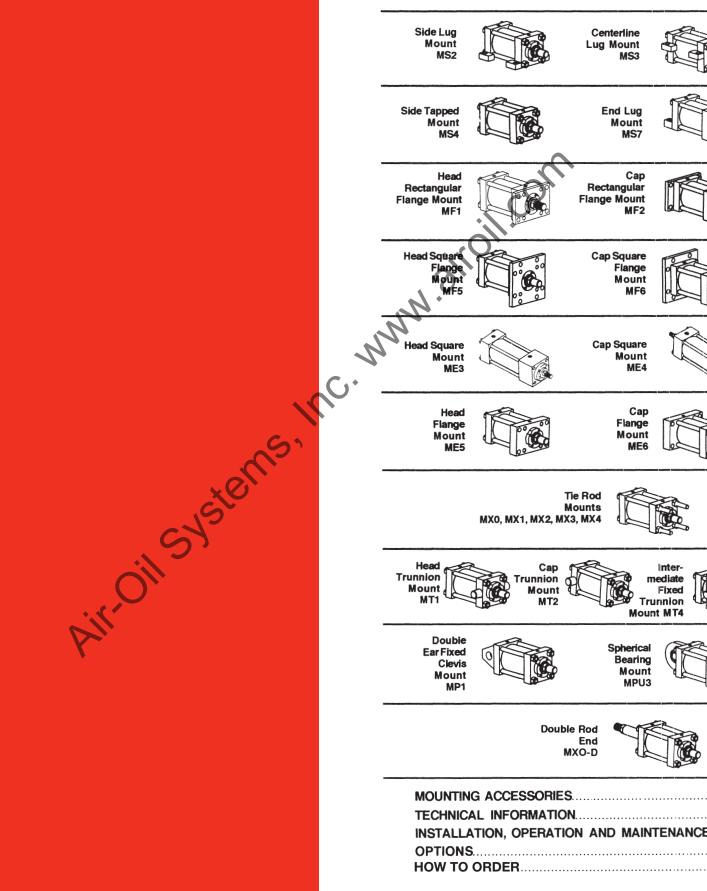
HOW TO ORDER



(Specify Piston Rod Code from dimensional chart)

velocities within the cylinder. Fluid velocities in the supply line

Port location: if other than position 1, must be specified.



Series 3A and 3AN for Heavy-Duty Service

■ High-Tech Duralon[®] Rod Bearing State-of-the-Art Rod and Piston Sealing System Heavy-Duty Piston-to-Rod Connection ■1.50" - 14.00" Bores ■ 150 – 250 PSI Pressure Ratings ■ N.F.P.A. Interchangeability — 23 Mounting Styles ■ No Lubrication Required with 3AN

Air-oil systems, Irc. Mon aircil c

SERIES 3A AND 3AN PNEUMATIC CYLINDERS

Series 3A and 3AN Pneumatic Cylinders

Page No.

	MS2 MS3	Side Lug Mount
	MS4 MS7	Side Tapped Mount130 End Lug Mount
	MF1 MF2	Head Rectangular Flange Mount 134 Cap Rectangular Flange Mount 136
	MF5 MF6	Head Square Flange Mount138 Cap Square Flange Mount140
	ME3 ME4	Head Square Mount142 Cap Square Mount144
	ME5 ME6	Head Flange Mount146 Cap Flange Mount148
	MXO-1-2-3-4	Tie Rod Mounts150
	MT1 MT2 MT4	Head Trunnion Mount152 Cap Trunnion Mount154 Intermediate Fixed Trunnion Mount156
	MP1 MP2 MPU3	Fixed Double Ear Clevis Mount 158 Detachable Clevis Mount 158 Spherical Bearing Mount
	MXO-D	Double Rod End162
E DATA		164 167 174 178 179

Series 3A and 3AN Pneumatic Cylinders

Series 3A **Pneumatic Cylinders**

Hanna's Series 3A low-pressure pneumatic cylinders are designed and built to meet today's exacting industrial requirements. Rugged, performanceoriented units, 3A cylinders incorporate field proven design features which assure long, trouble-free service.

Series 3A cylinders give you virtually unlimited flexibility in machinery design, with a full range of bore sizes (1.50" through 14.00") offered. Developed for pressure ratings of 150 to 250 p.s.i., Series 3A cylinders are available in 23 N.F.P.A. mounting styles.

When ordering, specify piston packing code "A" for moderate temperatures, and code "B" for high temperature service.

Series 3AN for Non-Lubricated Service

Hanna's Series 3AN cylinders are available in the same bore sizes and mounting styles as our 3A cylinders, and offer the added advantage of requiring no lubrication.

Extensive laboratory testing and countless field applications have proven conclusively that 3AN cylinders provide millions of maintenance and lubrication-free cycles. The reason: the combination of Hanna's unique Duralon® rod bearing and our glass-filled Teflon® piston seal with a bronzeimpregnated bearing strip completely eliminates metal-to-metal contact at bearing surfaces. This is an absolute requirement for non-lube service and extended bearing life.

When ordering, specify piston packing code "G" for moderate temperature service.

Consult factory for special requirements.

Series 3A and 3AN Features

1. Piston Rod End

Integral thread construction, precision-machined for close concentricity. Studded rod ends are available.

2. Duralon Rod Bearing

Hanna's high-tech Duralon rod beating is designed to perform under poorly lubricated, high-load conditions. The exact combination of woven Tetion and Dacron®, plus the fiberglass structural shell, increases load-carrying capabilities and eliminates "cold-flow" associated with Teflon. Duralon bearings are capable of sustaining much higher compressive loads than either bronze or cast iron, have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

3. Gland Construction

Two-piece (gland plus retainer plate), bolted-on or full-face retainer design. Packings may be captive in the gland or located in the head.

4. Rod Seal

Series 3A and 3AN cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance. Viton U-cup is available for higher temperature service.

5. Heads

Inc. Man Sin

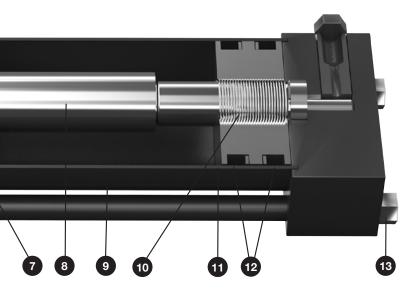
Steel heads are precision-machined to assure accurate alignment and close concentricity between piston, tube. piston rod and rod bearing

3

5

6. Cushion Check Seals

With self-aligning, full-floating design, the cushion check seals are closely fitted to cushion sleeve and spear. The seals serve as both cushion seal and check valve, providing effective cushioning and fast breakaway.


7. Tube Seal

Buna-N O-ring seal. Viton available for higher temperature service.

8. Piston Rod

Hanna's piston rods are machined to a close tolerance w minimum stock removal to maximize shank size and redu stress. Relief grooves are machined in areas of high stres to guard against fatigue failures. The rods provide 100.00 minimum yield strength in diameters up to 3.50"; 59,000 average yield strength in 4.00" diameter and above. All sizes are hard chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish

Series 3A and 3AN Pneumatic Cylinders

9. Tubing

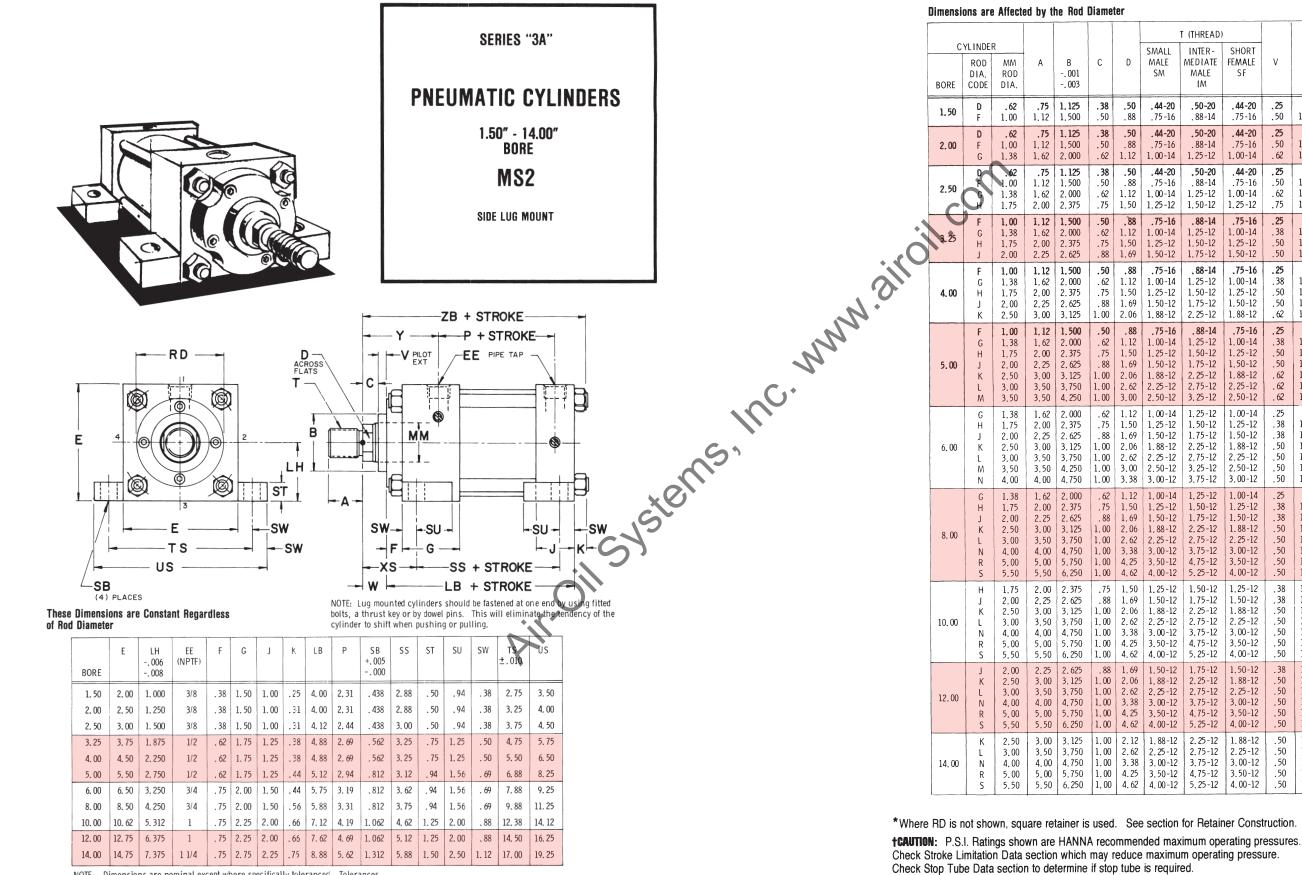
Steel tubing is precision-honed to a 16-20 micro-inch finish for close tolerance between piston and tube wall, and chrome plated for corrosion resistance.

10. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.

11. Piston

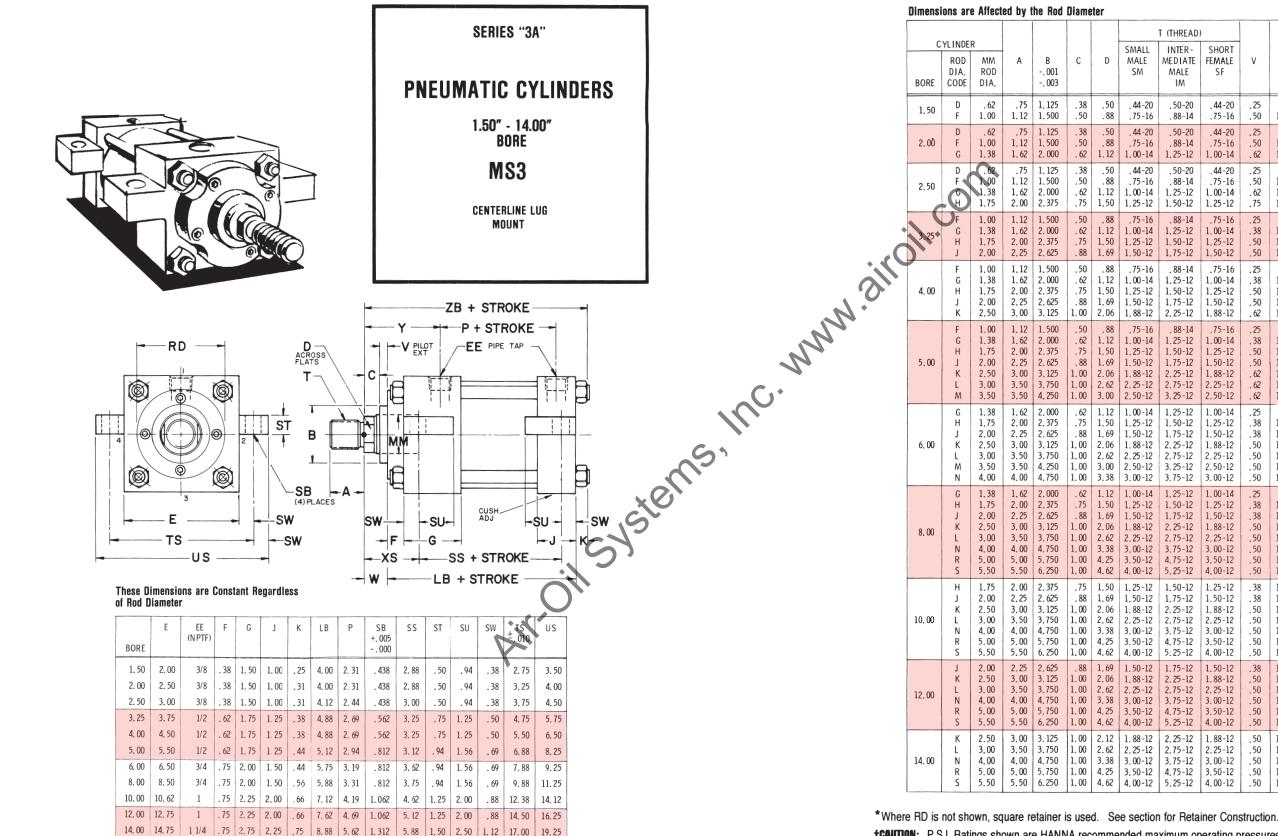
One-piece piston of high impact-resistant ductile iron threaded to piston rod, and furnished with breakaway spirals on each side.


12. Piston Sealing System

vith	
uce	
SS	
00	

Two Buna-N U-cups are standard, with Viton U-cups available for higher temperature service. For non-lubricated service, 3AN cylinders utilize a glass-filled. O-ring energized piston seal that provides positive sealing. A bronze-filled Teflon bearing strip provides a non-metallic bearing point on the piston, assuring long life and extremely low friction.

13. Tie Rods

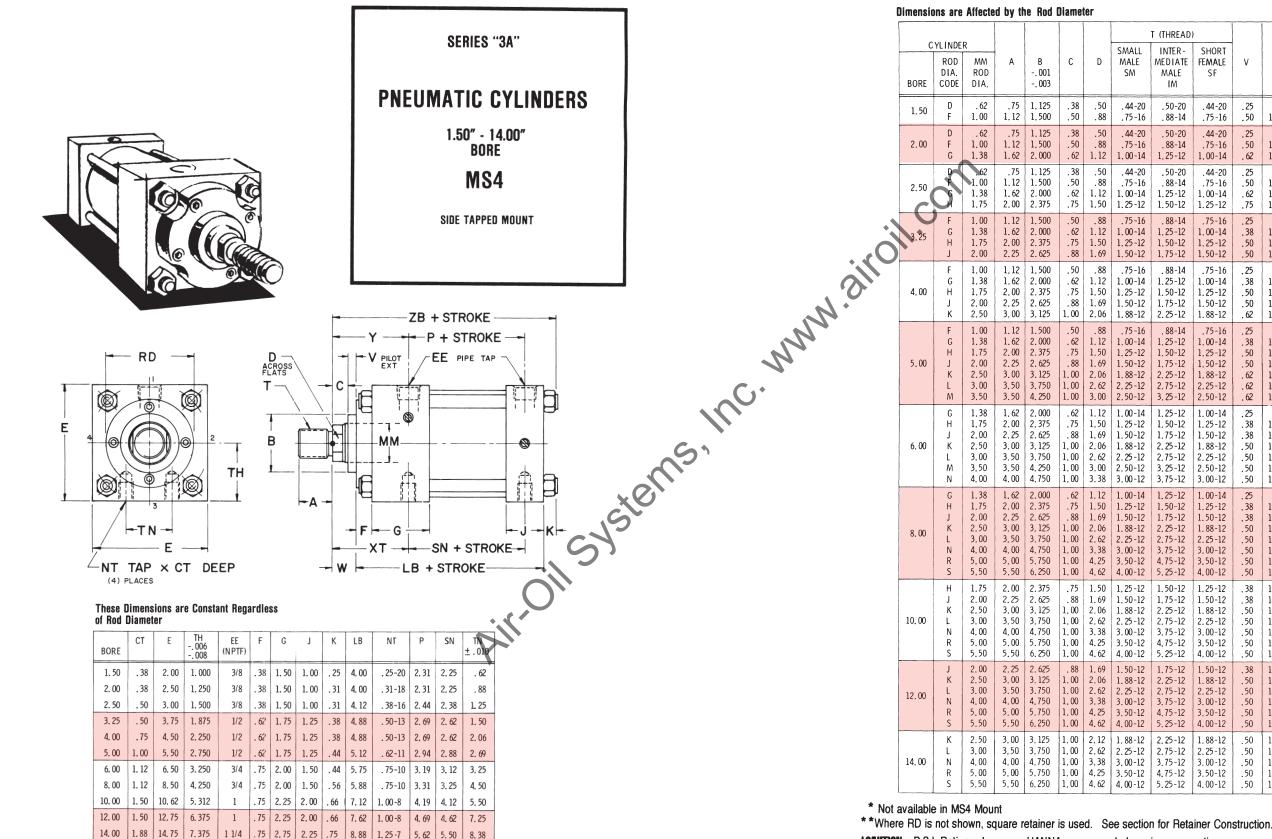

Made from high-strength steel, the tie rods are pre-stressed for fatique resistance.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to

Series 3A and 3AN Pneumatic Cylinders

7 (700540)			1				1		
SMALL MALE SM	T (THREAD) INTER- MEDIATE MALE IM	SHORT FEMALE SF	v	W	XS	Y	ZB	RD*	PSI RATING [†]
. 44-20 .75-16	.50-20 .88-14	. 44-20 .75-16	. 25 . 50	. 62 1. 00	1.38 1.75	1.88 2.25	4.88 5.25	-	250 250
.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	. 62 1, 00 1, 25	1.38 1.75 2.00	1.88 2.25 2.50	4.94 5.31 5.56	2.38 2.38 -	250 250 250
.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	, 25 . 50 . 62 . 75	. 62 1. 00 1. 25 1. 50	1,38 1,75 2,00 2,25	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 - -	250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.88 2.12 2.38 2.50	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	3.00 3.00 - -	250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	1.88 2.12 2.38 2.50 2.75	2,38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	3.00 3.00 - - -	250 250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.06 2.31 2.56 2.69 2.94 2.94 2.94	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	3.00 3.00 - - - -	250 250 250 250 250 250 250 250
1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2.31 2.56 2.69 2.94 2.94 2.94 2.94	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4.00 4.00 4.00 - - -	250 250 250 250 250 250 250
1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2.31 2.56 2.69 2.94 2.94 2.94 2.94 2.94 2.94	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 - - -	250 250 250 250 250 250 250 250
1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	2.75 2.88 3.12 3.12 3.12 3.12 3.12 3.12 3.12	3.06 3.19 3.44 3.44 3.44 3.44 3.44	8.94 9.06 9.31 9.31 9.31 9.31 9.31 9.31	4.00 4.00 5.12 - - -	150 150 150 150 150 150 150
1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	2.88 3.12 3.12 3.12 3.12 3.12 3.12 3.12	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4.00 5.12 - - -	150 150 150 150 150 150
1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3.38 3.38 3.38 3.38 3.38 3.38 3.38	3.69 3.69 3.69 3.69 3.69 3.69	11.19 11.19 11.19 11.19 11.19 11.19	5.12 - - - -	150 150 150 150 150

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.


Series 3A and 3AN Pneumatic Cylinders

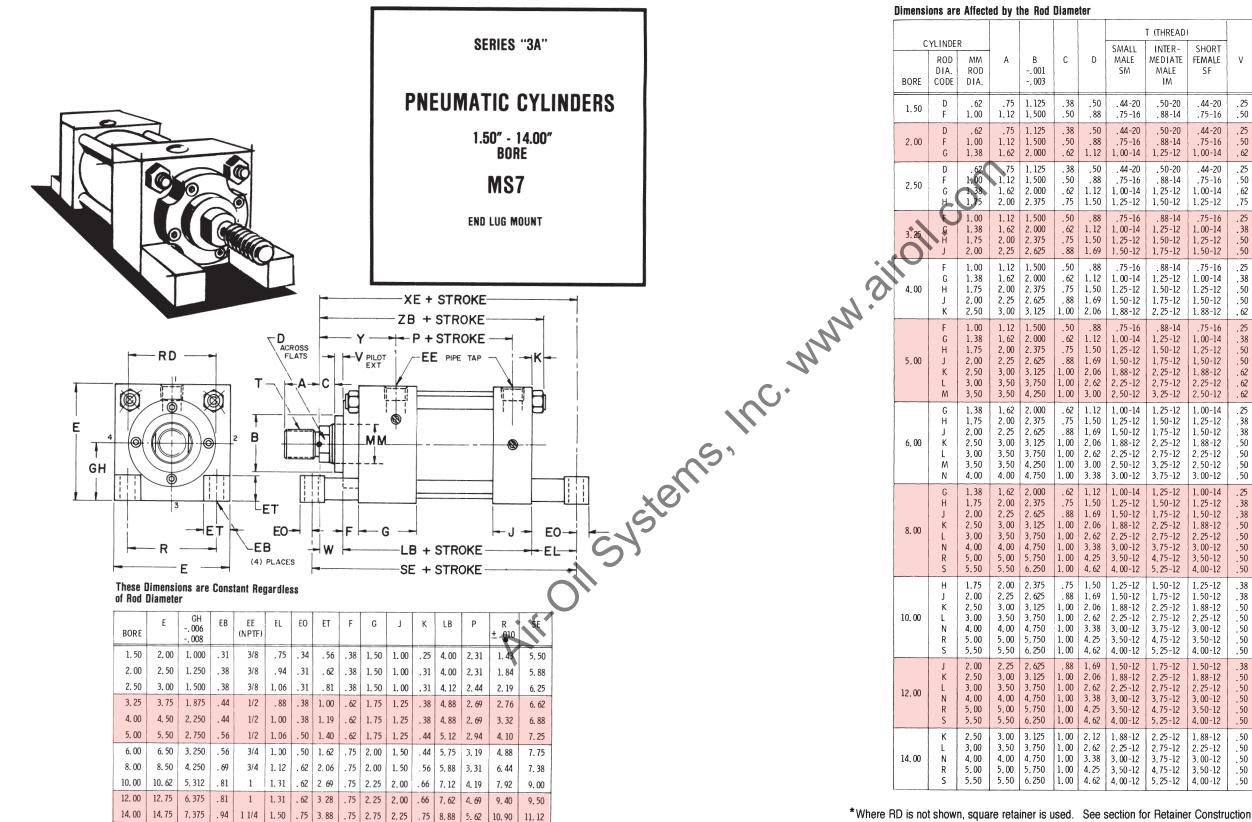
SMALL MALE SM	T (THREAD INTER- MEDIATE MALE IM	SHORT FEMALE SF	V	w	xs	Y	ZB	RD*	PSI RATING [†]
. 44-20 . 75-16	.50-20 .88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	1.38 1.75	1.88 2.25	4.88 5.25	-	250 250
. 44-20 . 75-16 1. 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	. 62 1, 00 1, 25	1.38 1.75 2.00	1.88 2.25 2.50	4.94 5.31 5.56	2.38 2.38 -	250 250 250
.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	. 62 1. 00 1. 25 1. 50	1.38 1.75 2.00 2.25	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 - -	250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.88 2.12 2.38 2.50	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	3.00 3.00 - -	250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	1.88 2.12 2.38 2.50 2.75	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	3.00 3.00 - - -	250 250 250 250 250
.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.06 2.31 2.56 2.69 2.94 2.94 2.94	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	3.00 3.00 - - - -	250 250 250 250 250 250 250
1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.31 2.56 2.69 2.94 2.94 2.94 2.94	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4.00 4.00 4.00 - - -	250 250 250 250 250 250 250 250
1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 75-12 4. 75-12 5. 25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2.31 2.56 2.69 2.94 2.94 2.94 2.94 2.94	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 - - -	250 250 250 250 250 250 250 250 250
1, 25 - 12 1, 50 - 12 1, 88 - 12 2, 25 - 12 3, 00 - 12 3, 50 - 12 4, 00 - 12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 38 . 38 . 50 . 50 . 50 . 50 . 50	1.12 1.25 1.50 1.50 1.50 1.50 1.50	2.75 2.88 3.12 3.12 3.12 3.12 3.12 3.12 3.12	3.06 3.19 3.44 3.44 3.44 3.44 3.44 3.44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	4.00 4.00 5.12 - - -	150 150 150 150 150 150 150
1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	2.88 3.12 3.12 3.12 3.12 3.12 3.12	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81	4.00 5.12 - - -	150 150 150 150 150 150
1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3.38 3.38 3.38 3.38 3.38 3.38	3.69 3.69 3.69 3.69 3.69 3.69	11.19 11.19 11.19 11.19 11.19 11.19	5.12 - - - -	150 150 150 150 150

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures.

Check Stroke Limitation Data section which may reduce maximum operating pressure.

Check Stop Tube Data section to determine if stop tube is required.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

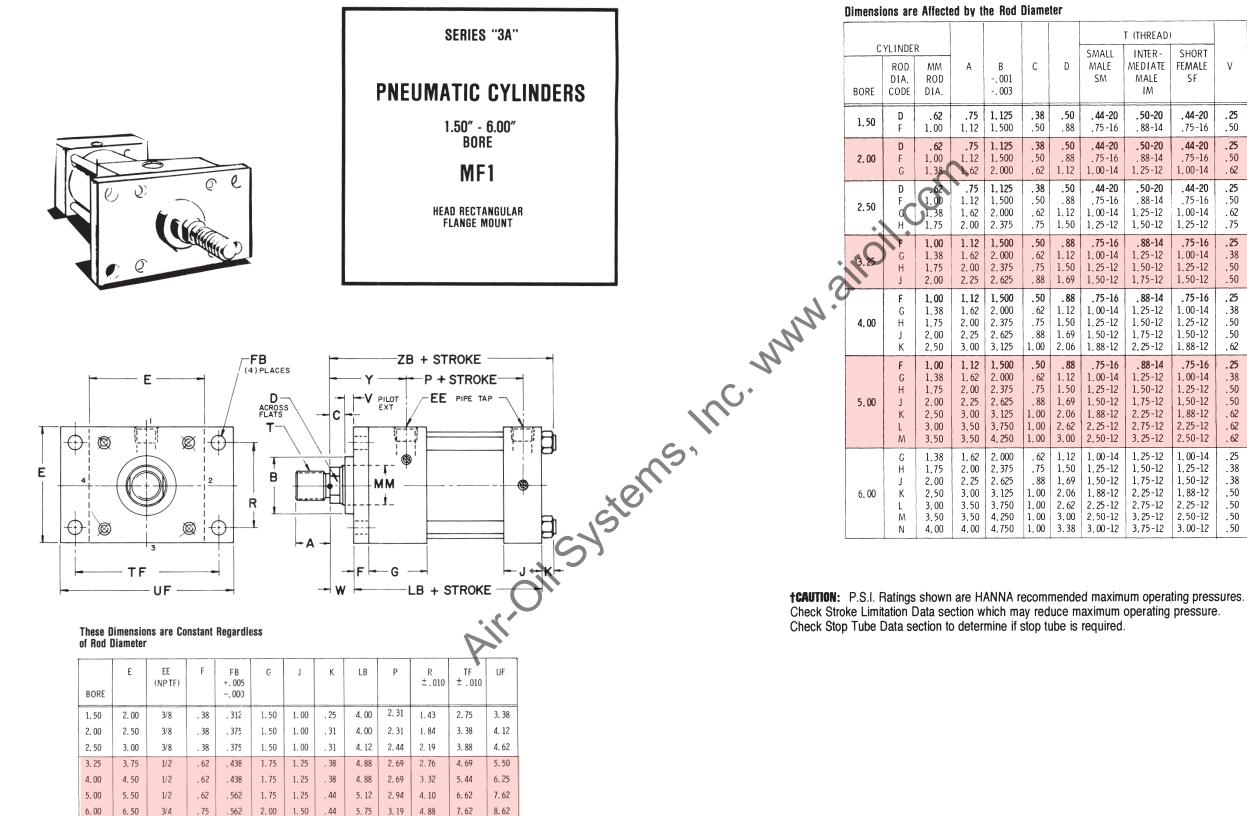

Series 3A and 3AN Pneumatic Cylinders

_										
	SMALL MALE SM	T (THREAD) INTER- MEDIATE MALE IM) FEMALE SF	V	w	хт	Y	ZB	RD**	PSI RATING [†]
	. 44-20 . 75-16	. 50-20 . 88-14	. 44-20 . 75-16	. 25 . 50	. 62 1. 00	1.94	1. 88 2. 25	4. 88 5. 25		250 250
	. 44-20 . 75-16 1. 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.94 2.31 *	1. 88 2. 25 2. 50	4.94 5.31 5.56	2.38 2.38 	250 250 250
	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.94 2.31 2.56	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 	250 250 250 250
	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.44 2.69 2.94 3.06	2.38 2.62 2.88 3.00	6. 00 6. 25 6. 50 6. 62	3.00 3.00 	250 250 250 250
	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2. 44 2. 69 2. 94 3. 06 3. 31	2.38 2.62 2.88 3.00 3.25	6. 00 6. 25 6. 50 6. 62 6. 88	3.00 3.00 	250 250 250 250 250
	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2. 44 2. 69 2. 94 3. 06 3. 31 3. 31 3. 31	2. 38 2. 62 2. 88 3. 00 3. 25 3. 25 3. 25	6. 31 6. 56 6. 81 6. 94 7. 19 7. 19 7. 19	3. 00 3. 00 	250 250 250 250 250 250 250 250
	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.81 3.06 3.19 3.44 3.44 3.44 3.44	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4. 00 4. 00 4. 00 	250 250 250 250 250 250 250 250
	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1, 25-12 1, 50-12 1, 75-12 2, 25-12 2, 75-12 3, 75-12 4, 75-12 5, 25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2. 81 3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	2. 75 3. 00 3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 	250 250 250 250 250 250 250 250 250
	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 12 3. 25 3. 50 3. 50 3. 50 3. 50 3. 50 3. 50	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8.94 9.06 9.31 9.31 9.31 9.31 9.31 9.31	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
and the second se	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 25 3. 50 3. 50 3. 50 3. 50 3. 50 3. 50	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4. 00 5. 12 	150 150 150 150 150 150
	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3. 81 3. 81 3. 81 3. 81 3. 81 3. 81	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 	150 150 150 150 150

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures.

Check Stroke Limitation Data section which may reduce maximum operating pressure.

Check Stop Tube Data section to determine if stop tube is required.


CAUTION: Check for interference between rod attachment and mounting lug. If necessary, specify longer than standard "C" dimension.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.

Series 3A and 3AN Pneumatic Cylinders

T (THREAD)									
L E	INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	W	XE	Y	ZB	RD∗	PSI RATING [†]
20 16	.50-20 .88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	5.38 5.75	1.88 2.25	4.88 5.25		250 250
20 16 14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	.62 1.00 1.25	5.56 5.94 6.19	1.88 2.25 2.50	4.94 5.31 5.56	2.38 2.38 	250 250 250
20 16 14 12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	5.94 6.19 6.44 6.69	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 	250 250 250 250 250
16 14 12 12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	6.50 6.75 7.00 7.12	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	3.00 3.00 	250 250 250 250
16 14 12 12 12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	6. 62 6. 88 7. 12 7. 25 7. 50	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	3.00 3.00 	250 250 250 250 250
16 14 12 12 12 12 12 12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	6.94 7.19 7.44 7.56 7.81 7.81 7.81	2. 38 2. 62 2. 88 3. 00 3. 25 3. 25 3. 25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	3. 00 3. 00 	250 250 250 250 250 250 250 250
14 12 12 12 12 12 12 12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	7.62 7.88 8.00 8.25 8.25 8.25 8.25 8.25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4. 00 4. 00 4. 00 	250 250 250 250 250 250 250 250
14 12 12 12 12 12 12 12 12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	7.88 8.12 8.25 8.50 8.50 8.50 8.50 8.50 8.50	2. 75 3. 00 3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94 7.94	4. 00 4. 00 4. 00 5. 12 	250 250 250 250 250 250 250 250 250
12 12 12 12 12 12 12 12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	9.56 9.69 9.94 9.94 9.94 9.94 9.94 9.94	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
12 12 12 12 12 12 12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 38 . 50 . 50 . 50 . 50 . 50	1.25 1.50 1.50 1.50 1.50 1.50	10. 19 10. 44 10. 44 10. 44 10. 44 10. 44	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4. 00 5. 12 	150 150 150 150 150 150
12 12 12 12 12 12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	11. 88 11. 88 11. 88 11. 88 11. 88 11. 88	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 	150 150 150 150 150

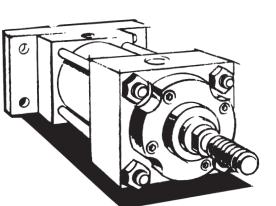
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression

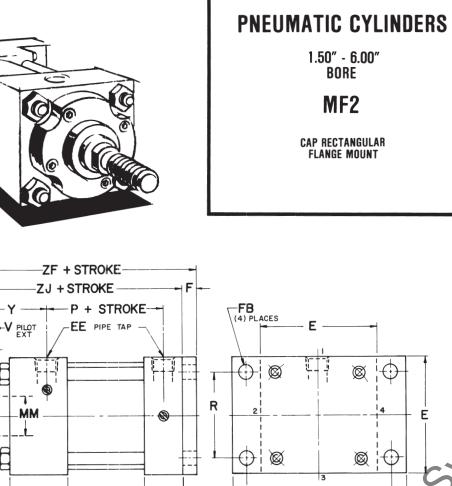
Series 3A and 3AN Pneumatic Cylinders

MALL IALE SM	T (THREAD) INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	w	WF	Y	ΖB	PSI RATING [†]
44-20 75-16	.50-20 .88-14	.44-20 .75-16	. 25 .50	. 62 1. 00	1.00 1.38	1.88 2.25	4, 88 5, 25	250 250
44-20 75-16 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.00 1.38 1.62	1.88 2.25 2.50	4, 94 5, 31 5, 56	250 250 250
44 -20 75 -16 00 -14 25 -12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.00 1.38 1.62 1.88	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	250 250 250 250 250
75 - 16 00 - 14 25 - 12 50 - 12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.38 1.62 1.88 2.00	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	250 250 250 250
75 - 16 00 - 14 25 - 12 50 - 12 88 - 12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62		1.38 1.62 1.88 2.00 2.25	2. 38 2. 62 2. 88 3. 00 3. 25	6.00 6.25 6.50 6.62 6.88	250 250 250 250 250 250
75 - 16 00 - 14 25 - 12 50 - 12 88 - 12 25 - 12 50 - 12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	1.38 1.62 1.88 2.00 2.25 2.25 2.25 2.25	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	250 250 250 250 250 250 250 250
00-14 25-12 50-12 88-12 25-12 50-12 00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	1. 62 1. 88 2. 00 2. 25 2. 25 2. 25 2. 25 2. 25 2. 25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69 7.69	250 250 250 250 250 250 250 250

 \mathbf{D}_{\neg}

--Τ


B


-Δ

- W

RD

ACROSS

TF

UF

SERIES "3A"

	1.50	D F	.62 1.00	.75 1.12	1.125 1.500	. 38 . 50	. 50 . 88	. 44-20 . 75-16	
	2.00	D F G	.62 1.00 1.38	.75 1.12 1.62	1.125 1.500 2.000	.38 .50 .62	.50 .88 1.12	. 44-20 . 75-16 1. 00-14	
	2.50	D F G	.62 1.00 1.38 1.75	75 1.12 1.62 2.00	1.125 1.500 2.000 2.375	.38 .50 .62 .75	.50 .88 1.12 1.50	.44-20 .75-16 1.00-14 1.25-12	
	3.25	С Н Ј	1.00 1.38 1.75 2.00	1.12 1.62 2.00 2.25	1.500 2.000 2.375 2.625	.50 .62 .75 .88	.88 1.12 1.50 1.69	.75-16 1.00-14 1.25-12 1.50-12	
han -	4.00	F G H J K	1.00 1.38 1.75 2.00 2.50	1,12 1.62 2.00 2.25 3.00	1,500 2,000 2,375 2,625 3,125	.50 .62 .75 .88 1.00	.88 1.12 1.50 1.69 2.06	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	
ems, mc. www	5.00	F G H J K L M	1.00 1.38 1.75 2.00 2.50 3.00 3.50	1.12 1.62 2.00 2.25 3.00 3.50 3.50	1.500 2.000 2.375 2.625 3.125 3.750 4.250	.50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1.50 1.69 2.06 2.62 3.00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	
emsi	6.00	G H J K L M N	1.38 1.75 2.00 2.50 3.00 3.50 4.00	1.62 2.00 2.25 3.00 3.50 3.50 4.00	2.000 2.375 2.625 3.125 3.750 4.250 4.750	. 62 . 75 . 88 1. 00 1. 00 1. 00 1. 00	1.12 1.50 1.69 2.06 2.62 3.00 3.38	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	
	L	L		I				L	-

Dimensions are Affected by the Rod Diameter

Α

MM

ROD

DIA.

CYLINDER

ROD

DIA.

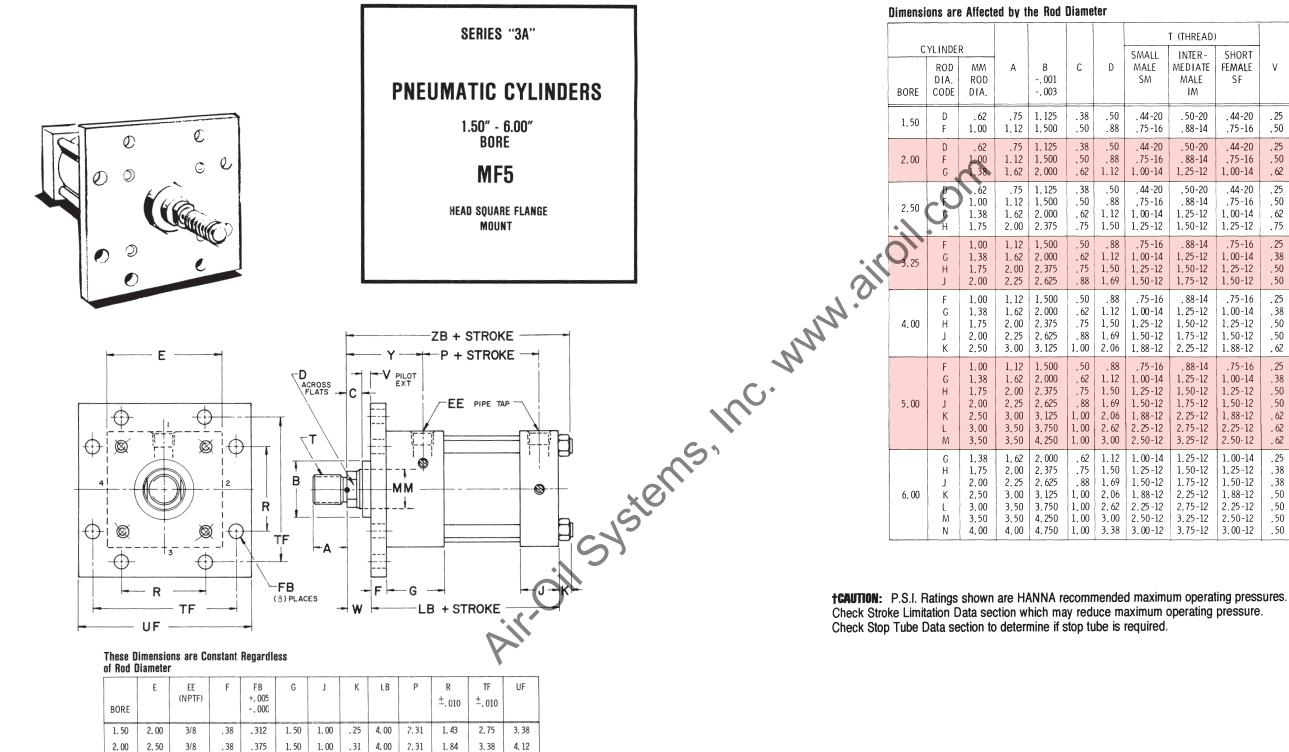
CODE

BORE

*Where RD is not shown, square retainer is used. See section for Retainer Construction. **†CAUTION:** P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.

These Dimensions are Constant Regardless of Rod Diameter

G


BORE	E	EE (NP TF)	F	FB +.005 000	G	J	К	LB	Ρ	R ± .010	TF ± .010	UF
1.50	2.00	3/8	. 38	. 312	1.50	1.00	. 25	4.00	2.31	1.43	2.75	3. 38
2.00	2.50	3/8	. 38	. 375	l. 50	1.00	. 31	4.00	2.31	1.84	3. 38	4.12
2.50	3.00	3/8	. 38	. 375	l. 50	1.00	. 31	4.12	2.44	2.19	3.88	4.62
3.25	3.75	1/2	. 62	. 438	1.75	1.25	. 38	4.88	2.69	2.76	4.69	5.50
4.00	4.50	1/2	. 62	. 438	1.75	1.25	. 38	4.88	2.69	3. 32	5.44	6.25
5.00	5.50	1/2	. 62	. 562	1.75	1.25	. 44	5. 12	2.94	4.10	6.62	7.62
6.00	6.50	3/4	. 75	. 562	2.00	1.50	. 44	5.75	3. 19	4. 88	7.62	8.62

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on ''Plus Stroke'' dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

LB + STROKE

Series 3A and 3AN Pneumatic Cylinders

				T (THREAD)								
B ~.001 ~.003	С	D	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT FEMALE SF	V	W	ZJ	Y	ZF	RD*	PSI RATING [†]
1.125 1.500	. 38 . 50	.50 .88	. 44-20 . 75-16	.50-20 .88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	4. 62 5. 00	1.88 2.25	5. 00 5. 38		250 250
1.125 1.500 2.000	.38 .50 .62	.50 .88 1.12	. 44-20 . 75-16 1. 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	4. 62 5. 00 5. 25	1.88 2.25 2.50	5.00 5.38 5.62	2.38 2.38 	250 250 250
1.125 1.500 2.000 2.375	.38 .50 .62 .75	.50 .88 1.12 1.50	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	. 25 . 50 . 62 . 75	.62 1.00 1.25 1.50	4. 75 5. 12 5. 38 5. 62	1.88 2.25 2.50 2.75	5. 12 5. 50 5. 75 6. 00	2.38 2.38 	250 250 250 250
1.500 2.000 2.375 2.625	.50 .62 .75 .88	.88 1.12 1.50 1.69	.75-16 1.00-14 1.25-12 1.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12	.75-16 1.00-14 1.25-12 1.50-12	. 25 . 38 . 50 . 50	.75 1.00 1.25 1.38	5. 62 5. 88 6. 12 6. 25	2.38 2.62 2.88 3.00	6. 25 6. 50 6. 75 6. 88	3.00 3.00 	250 250 250 250
1.500 2.000 2.375 2.625 3.125	.50 .62 .75 .88 1.00	.88 1.12 1.50 1.69 2.06	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	5. 62 5. 88 6. 12 6. 25 6. 50	2.38 2.62 2.88 3.00 3.25	6. 25 6. 50 6. 75 6. 88 7. 12	3.00 3.00 	250 250 250 250 250 250
1.500 2.000 2.375 2.625 3.125 3.750 4.250	.50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1.50 1.69 2.06 2.62 3.00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	5. 88 6. 12 6. 38 6. 50 6. 75 6. 75 6. 75	2. 38 2. 62 2. 88 3. 00 3. 25 3. 25 3. 25 3. 25	6.50 6.75 7.00 7.12 7.38 7.38 7.38	3.00 3.00 	250 250 250 250 250 250 250 250
2.000 2.375 2.625 3.125 3.750 4.250 4.750	.62 .75 .88 1.00 1.00 1.00 1.00	1.12 1.50 1.69 2.06 2.62 3.00 3.38	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50	6. 62 6. 88 7. 00 7. 25 7. 25 7. 25 7. 25 7. 25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7. 38 7. 62 7. 75 8. 00 8. 00 8. 00 8. 00	4. 00 4. 00 4. 00 	250 250 250 250 250 250 250 250

4.62

5.50

6.25

7.62

3.88

4.69

5.44

6.62

7.62 8.62

3.00

3.75

4.50

5.50

6.00 6.50

3/8

1/2

1/2

1/2

3/4

2.50

3.25

4.00

5.00

. 375

. 438

. 438

. 562

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

. 38

. 62

. 62

. 62

.75

1.50

1.75

1.75

1.75

. 562 2.00

1.00

1.25

1.25

1.25

1.50

4.12

4,88

4.88

. 44 5. 75

. 31

. 38

. 38

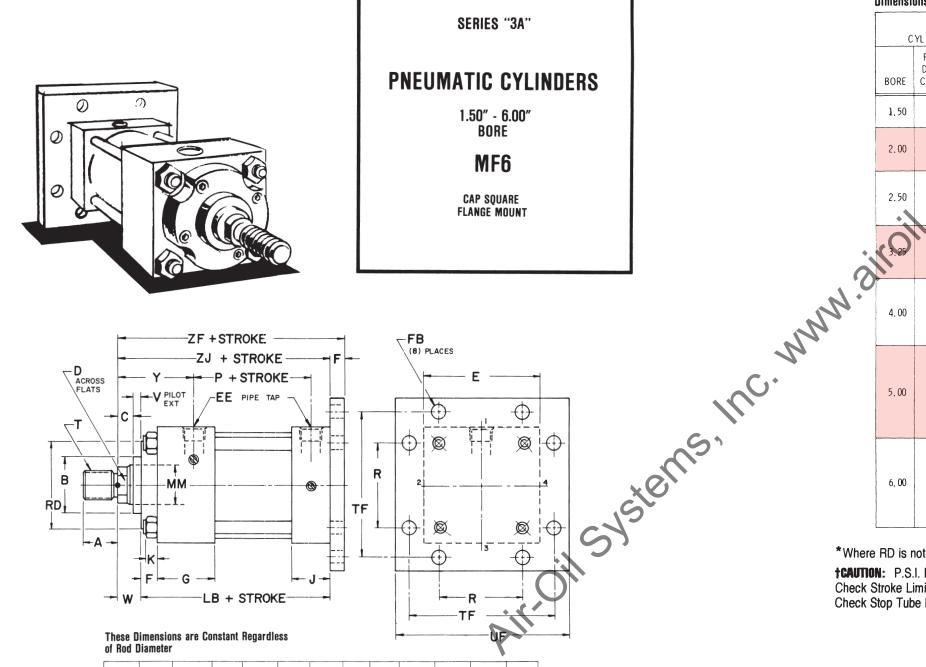
. 44 5.12 2.44

2.69

2.69

2.94

2.19


2.76

3.32

4.10

3.19 4.88

	SMALL MALE SM	T (THREAD) INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	W	WF	Y	ZB	PSI RATING [†]
) }	. 44-20 . 75-16	. 50-20 . 88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	1.00 1.38	1.88 2.25	4. 88 5. 25	250 250
) }	. 44-20 . 75-16 1. 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	.62 1.00 1.25	1.00 1.38 1.62	1.88 2.25 2.50	4.94 5.31 5.56	250 250 250
)	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	. 25 . 50 . 62 . 75	.62 1.00 1.25 1.50	1.00 1.38 1.62 1.88	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	250 250 250 250
} }))	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	1.38 1.62 1.88 2.00	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	250 250 250 250 250
3	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	1. 38 1. 62 1. 88 2. 00 2. 25	2.38 2.62 2.88 3.00 3.25	6.00 6.25 6.50 6.62 6.88	250 250 250 250 250
3 ?)))	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	1. 38 1. 62 1. 88 2. 00 2. 25 2. 25 2. 25 2. 25	2. 38 2. 62 2. 88 3. 00 3. 25 3. 25 3. 25 3. 25	6. 31 6. 56 6. 81 6. 94 7. 19 7. 19 7. 19	250 250 250 250 250 250 250
2)))))))	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	1. 62 1. 88 2. 00 2. 25 2. 25 2. 25 2. 25 2. 25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69 7.69	250 250 250 250 250 250 250 250

BORE	E	EE (NPTF)	F	FB +.005 000	G	J	К	LB	Р	R ±.010	TF ± .010	UF
1.50	2.00	3/8	. 38	. 312	1.50	1.00	. 25	4.00	2.31	1. 43	2.75	3.38
2.00	2.50	3/8	. 38	. 375	1.50	1.00	. 31	4.00	2.31	1.84	3.38	4.12
2.50	3.00	3/8	. 38	. 375	1.50	1.00	. 31	4.12	2.44	2.19	3.88	4. 62
3.25	3.75	1/2	. 62	. 438	1.75	1.25	. 38	4.88	2.69	2.76	4. 69	5.50
4.00	4. 50	1/2	. 62	. 438	1.75	1.25	. 38	4.88	2.69	3.32	5.44	6. 25
5.00	5.50	1/2	. 62	. 562	1.75	1.25	. 44	5.12	2.94	4. 10	6. 62	7.62
6.00	6. 50	3/4	. 75	. 562	2.00	1.50	. 44	5.75	3. 19	4.88	7.62	8.62

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to

manufacturing tolerances and tube compression.

Dimensions are Affected by the Rod Diameter

MM

ROD

DIA.

. 62

1.00

. 62

38 1.75

1.00

1.38 1.75

2.00

1.00

1.38 1.75

2.00

2.50

1.00

1.38

1.75

2.00

2.50

3.00

3.50

1.38 1.75

2.00

2.50

3.00

3.50

4.00

1.00

CYLINDER

ROD

DIA.

CODE

D

F

D

G

D

F

G

Н

J

К

G

Н

J

Κ

L

M

G H

1

Κ

L

M

N

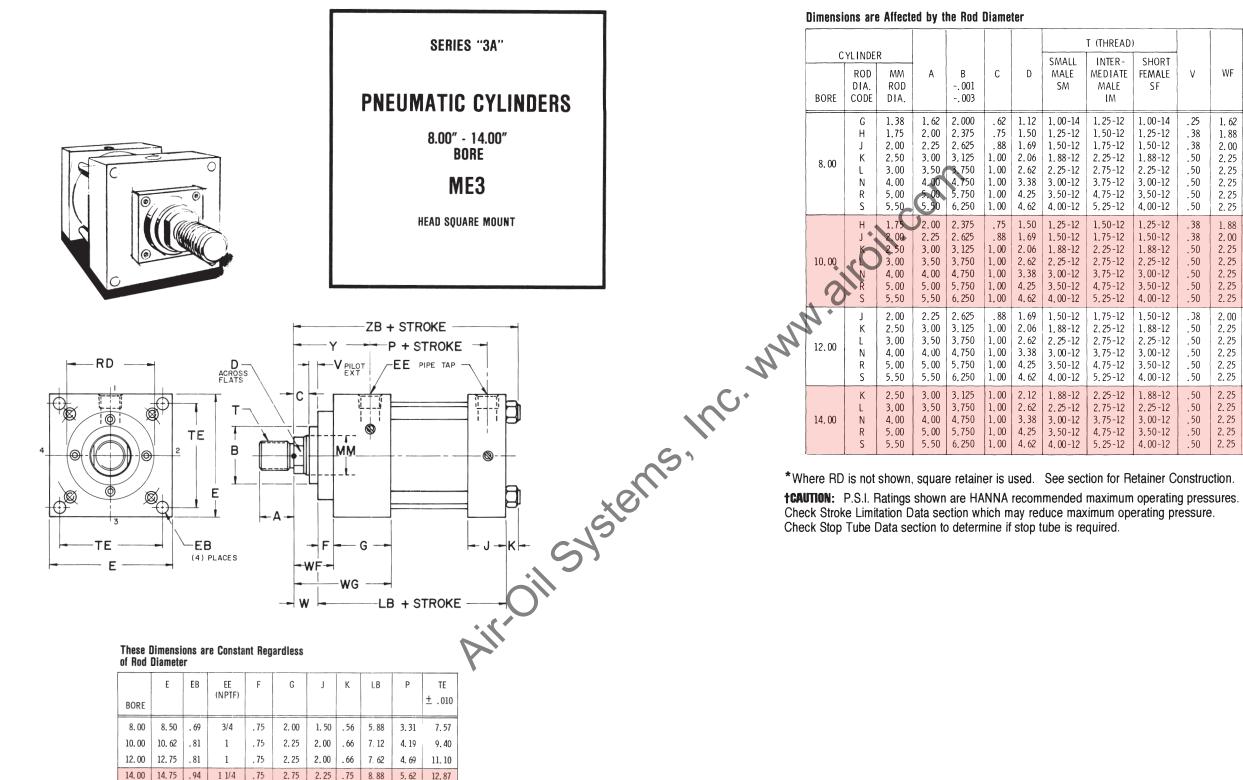
BORE

1.50

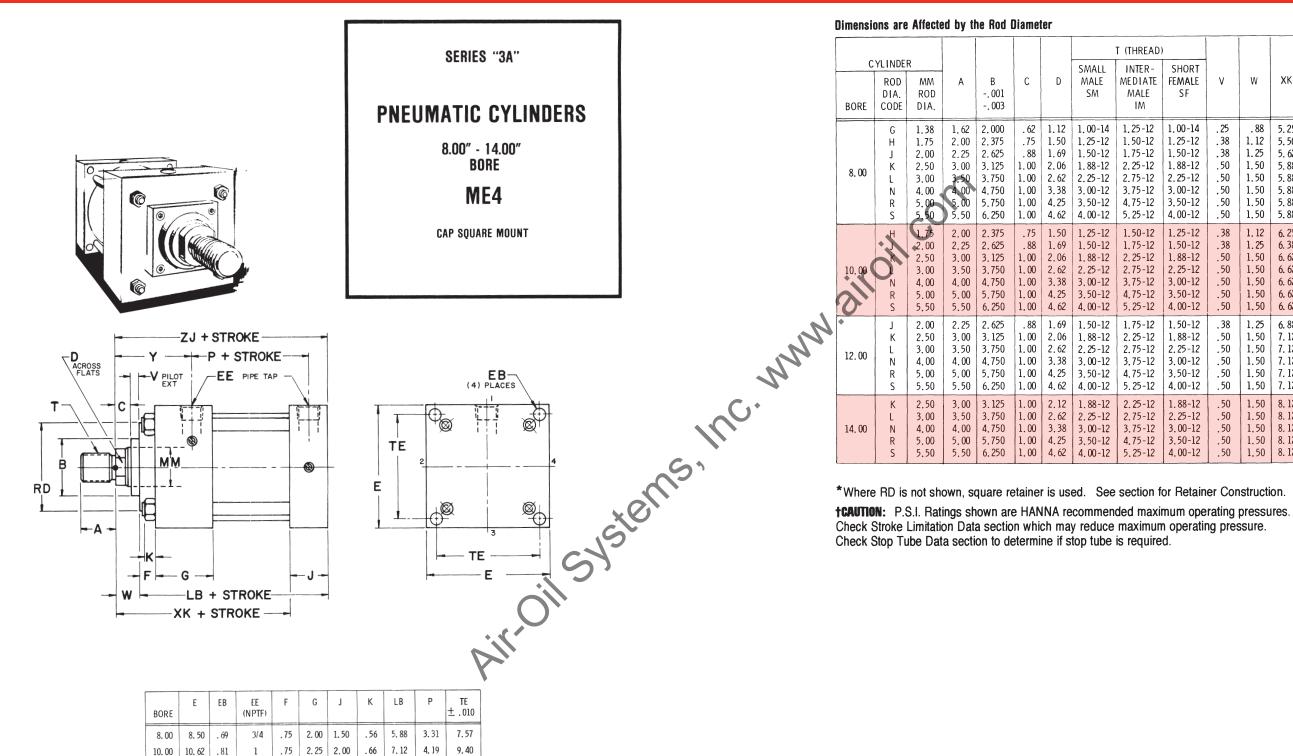
2.00

2.50

Series 3A and 3AN Pneumatic Cylinders


					T (THREAD)								
A	B 001 003	С	D	SMALL MALE SM	INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	W	ZJ	Y	ZF	RD*	PSI RATING [†]
.75 1.12	1.125 1.500	. 38 . 50	. 50 . 88	. 44-20 . 75-16	. 50-20 . 88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	4. 62 5. 00	1.88 2.25	5. 00 5. 38		250 250
.75 1.12 1.62	1.125 1.500 2.000	. 38 . 50 . 62	.50 .88 1.12	. 44-20 . 75-16 1. 00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	.62 1.00 1.25	4, 62 5, 00 5, 25	1.88 2.25 2.50	5.00 5.38 5.62	2.38 2.38 	250 250 250
.75 1.12 1.62 2.00	1.125 1.500 2.000 2.375	. 38 . 50 . 62 . 75	.50 .88 1.12 1.50	.44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	. 25 . 50 . 62 . 75	.62 1.00 1.25 1.50	4. 75 5. 12 5. 38 5. 62	1.88 2.25 2.50 2.75	5. 12 5. 50 5. 75 6. 00	2.38 2.38 	250 250 250 250
1.12 1.62 2.00 2.25	1,500 2,000 2,375 2,625	.50 .62 .75 .88	.88 1.12 1.50 1.69	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	. 25 . 38 . 50 . 50	.75 1.00 1.25 1.38	5. 62 5. 88 6. 12 6. 25	2.38 2.62 2.88 3.00	6. 25 6. 50 6. 75 6. 88	3.00 3.00 	250 250 250 250 250
1.12 1.62 2.00 2.25 3.00	1,500 2,000 2,375 2,625 3,125	.50 .62 .75 .88 1.00	.88 1.12 1.50 1.69 2.06	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	5. 62 5. 88 6. 12 6. 25 6. 50	2.38 2.62 2.88 3.00 3.25	6. 25 6. 50 6. 75 6. 88 7. 12	3.00 3.00 	250 250 250 250 250 250
1.12 1.62 2.00 2.25 3.00 3.50 3.50	1.500 2.000 2.375 2.625 3.125 3.750 4.250	.50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1.50 1.69 2.06 2.62 3.00	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	5. 88 6. 12 6. 38 6. 50 6. 75 6. 75 6. 75	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	6.50 6.75 7.00 7.12 7.38 7.38 7.38	3. 00 3. 00 	250 250 250 250 250 250 250 250
1.62 2.00 2.25 3.00 3.50 3.50 4.00	2.000 2.375 2.625 3.125 3.750 4.250 4.750	. 62 . 75 . 88 1. 00 1. 00 1. 00 1. 00	1.12 1.50 1.69 2.06 2.62 3.00 3.38	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50	6. 62 6. 88 7. 00 7. 25 7. 25 7. 25 7. 25 7. 25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.38 7.62 7.75 8.00 8.00 8.00 8.00 8.00	4. 00 4. 00 4. 00 	250 250 250 250 250 250 250 250

*Where RD is not shown, square retainer is used. See section for Retainer Construction.


†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures.

Check Stroke Limitation Data section which may reduce maximum operating pressure.

Check Stop Tube Data section to determine if stop tube is required.

(THREAD) INTER - MEDIATE MALE IM	SHORT FEMALE SF	۷	WF	WG	W	Y	ZB	RD*	PSI RATINGÎ
1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	1. 62 1. 88 2. 00 2. 25 2. 25 2. 25 2. 25 2. 25 2. 25	3. 62 3. 88 4. 00 4. 25 4. 25 4. 25 4. 25 4. 25 4. 25	. 88 1. 12 1. 25 1. 50 1. 50 1. 50 1. 50 1. 50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38 3.38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94 7.94	4. 00 4. 00 4. 00 5. 12 	250 250 250 250 250 250 250 250 250
1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.88 2.00 2.25 2.25 2.25 2.25 2.25 2.25 2.25	4. 12 4. 25 4. 50 4. 50 4. 50 4. 50 4. 50 4. 50	1. 12 1. 25 1. 50 1. 50 1. 50 1. 50 1. 50 1. 50	3.06 3.19 3.44 3.44 3.44 3.44 3.44 3.44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150 150
1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	2.00 2.25 2.25 2.25 2.25 2.25 2.25 2.25	4. 25 4. 50 4. 50 4. 50 4. 50 4. 50 4. 50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4. 00 5. 12 	150 150 150 150 150 150
2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	2.25 2.25 2.25 2.25 2.25 2.25	5.00 5.00 5.00 5.00 5.00 5.00	1.50 1.50 1.50 1.50 1.50 1.50	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 	150 150 150 150 150

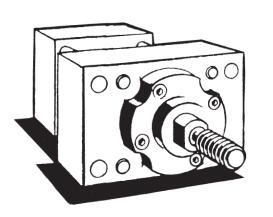
1

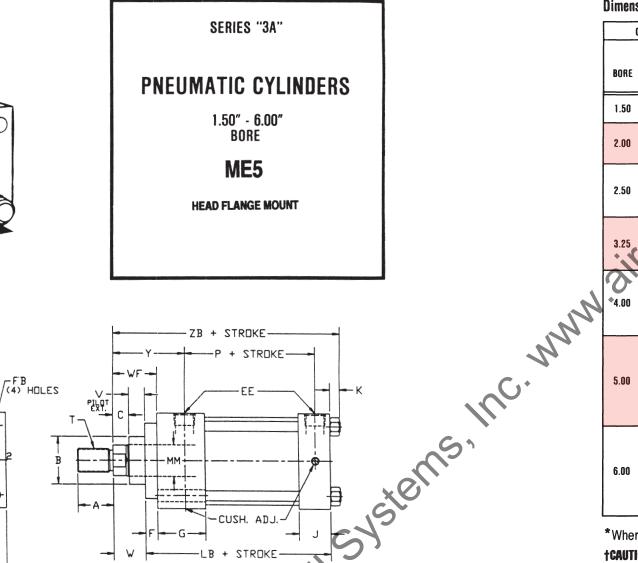
14.00 14.75 .94 11/4 .75 2.75 2.25

12.00 12.75 .81

.75 2.25 2.00

7.62


. 66


4.69

.75 8.88 5.62 12.87

11.10

	the second s								
L	T (THREAD) INTER- MEDIATE MALE IM	SHORT FEMALE SF	v	w	ХК	Y	ZJ	RD*	PSI RATING [†]
14 12 12 12 12 12 12 12 12	$\begin{array}{c} 1,25-12\\ 1,50-12\\ 1,75-12\\ 2,25-12\\ 2,75-12\\ 3,75-12\\ 4,75-12\\ 5,25-12\\ \end{array}$	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	5. 25 5. 50 5. 62 5. 88 5. 88 5. 88 5. 88 5. 88 5. 88	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38	6.75 7.00 7.12 7.38 7.38 7.38 7.38 7.38 7.38	4. 00 4. 00 4. 00 5. 12 	250 250 250 250 250 250 250 250 250
12 12 12 12 12 12 12 12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50	6. 25 6. 38 6. 62 6. 62 6. 62 6. 62 6. 62 6. 62	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8. 25 8. 38 8. 62 8. 62 8. 62 8. 62 8. 62 8. 62	4.00 4.00 5.12 	150 150 150 150 150 150 150
12 12 12 12 12 12 12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	6.88 7.12 7.12 7.12 7.12 7.12 7.12 7.12	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8.88 9.12 9.12 9.12 9.12 9.12 9.12	4.00 5.12 	150 150 150 150 150 150
12 12 12 12 12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	8. 12 8. 12 8. 12 8. 12 8. 12 8. 12	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	10. 38 10. 38 10. 38 10. 38 10. 38	5. 12 	150 150 150 150 150

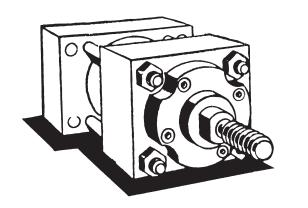
These Dimensions are Constant Regardless of Rod Diameter

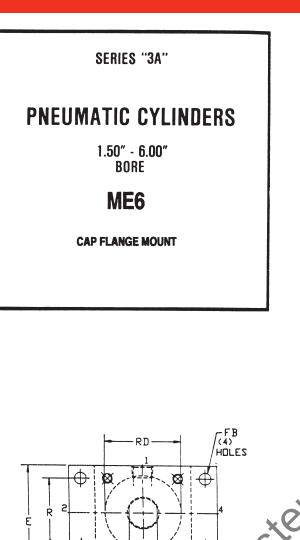
 \oplus

00

D

BORE	E	EE (NPTF)	F	F8 +.005 000	6	J	K	LB	P	R ±.010	TF ±.010	UF
1.50 2.00 2.50	2 00 2 50 3 00	3/8 3/8 3/8	38 38 .38	.312 375 375	1 50 1 50 1 50	1 00 1 00 1 00	25 31 31	4 00 4 00 4 12	2.31 2 31 2 44	1 43 1.84 2 19	2.75 3 38 3 88	3 38 4 12 4 62
3 25 4.00 5.00 6.00	3 75 4 50 5 50 6 50	1/2 1/2 1/2 3/4	62 62 62 75	438 438 562 562	1 75 1 75 1 75 2 00	1 25 1 25 1 25 1 25 1 50	38 38 44 44	4 88 4 88 5 12 5 75	2.69 2 69 2.94 3 19	2.76 3.32 4.10 4.88	4 69 5 44 6 62 7 62	5 50 6 25 7 62 8 62


NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

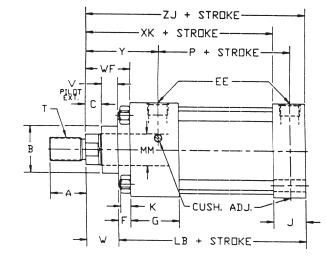

Dimensions are Affected by the Rod Diameter

	C	LINDER								T (THREAD)							
	BORE	ROD DIA. Code	MM ROD DIA.	A	B 001 003	C	D	RO* ±.005	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT FEMALE SF	v	w	WF	Y	ZB	PSI Rating†
	1.50	D F	62 1 00	75 1 12	1.125 1.500	.38 50	50 88		44-20 75-16	50-20 88-14	.44-20 .75-16	25 .50	.62 1.00	1 00 1 38	1.88 2 25	4.88 5.25	250 250
	2.00	D F G	62 1 00 1 38	75 1 12 1 62	1 125 1 500 2 000	38 50 62	50 88 1 12	2 38 2 38 -	44-20 75-16 1 00-14	50-20 88-14 1 25-12	.44-20 .75-16 1 00-14	25 50 62	62 1 00 1.25	1 00 1 38 1 62	1 88 2.25 2 50	4.94 5.31 5.56	250 250 250
	2.50	D F G H	62 1 00 1 38 1 75	75 1 12 62 2 00	1 125 1 500 2 000 2 375	38 50 62 75	50 88 1 12 1 50	2 38 2 38 2 94 -	44-20 75-16 1 00-14 1 25-12	50-20 88-14 1 25-12 1.50-12	44-20 75-16 1.00-14 1.25-12	.25 50 62 .75	62 1 00 1 25 1 50	1 00 1 38 1 62 1.88	1 88 2 25 2 50 2 75	5.06 5.44 5.69 5.94	250 250 250 250
	3.25		1 00 1 38 1 75 2 00	1 12 1 62 2.00 2 25	1.500 2.000 2 375 2.625	.50 .62 75 .88	88 1.12 1 50 1 69	3 00 3 00 3 50 -	75-16 1 00-14 1 25-12 1 50-12	88-14 1.25-12 1 50-12 1 75-12	.75-16 1.00-14 1.25-12 1 50-12	.25 .38 .50 .50	75 1.00 1.25 1.38	1.38 1.62 1 88 2.00	2 38 2 62 2.88 3 00	6.00 6.25 6.50 6.62	250 250 250 250
1	* 4.00	F G H J K	1 00 1 38 1 75 2 00 2 50	1 12 1 62 2 00 2 25 3 00	1 500 2 000 2.375 2.625 3.125	.50 .62 75 .88 1.00	.88 1 12 1 50 1 69 2.06	3.00 3 00 3 50 4 12 4 12	75-16 1 00-14 1 25-12 1 50-12 1.88-12	88-14 1 25-12 1 50-12 1.75-12 2 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1 38 1.62	1 38 1 62 1 88 2.00 2 25	2.38 2.62 2 88 3 00 3 25	6.00 6.25 6.50 6.62 6.88	250 250 250 250 250
	5.00	F G H J K L M	1 00 1.38 1 75 2 00 2.50 3 00 3 50	1 12 1 62 2 00 2.25 3.00 3 50 3.50	1.500 2.000 2.375 2.625 3.125 3.750 4.250	50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1 50 1.69 2.06 2.62 3.00	3 00 3.00 3.50 4 12 4.12 5 38 5 38	75-16 1 00-14 1 25-12 1 50-12 1 88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2 25-12 2 75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	75 1.00 1.25 1.38 1.62 1.62 1.62	1 38 1.62 1.88 2 00 2.25 2.25 2 25	2 38 2.62 2.88 3 00 3 25 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	250 250 250 250 250 250 250
	6.00	G H J K L M N	1 38 1 75 2 00 2 50 3.00 3 50 4.00	1 62 2 00 2 25 3.00 3 50 3.50 4.00	2.000 2.375 2.625 3.125 3.750 4.250 4.750	.62 .75 .88 1.00 1.00 1.00 1.00	1.12 1.50 1.69 2.06 2.62 3.00 3 38	4.00 4 00 5 25 5 25 6 25 6 25 6 25	1 00-14 1 25-12 1 50-12 1 88-12 2 25-12 2 50-12 3 00-12	1 25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	1.62 1.88 2.00 2 25 2.25 2 25 2.25 2.25	2.75 3.00 3.12 3 38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	250 250 250 250 250 250 250

*Where RD is not shown, MF1 retainer is used. See section for Retainer Construction.

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.

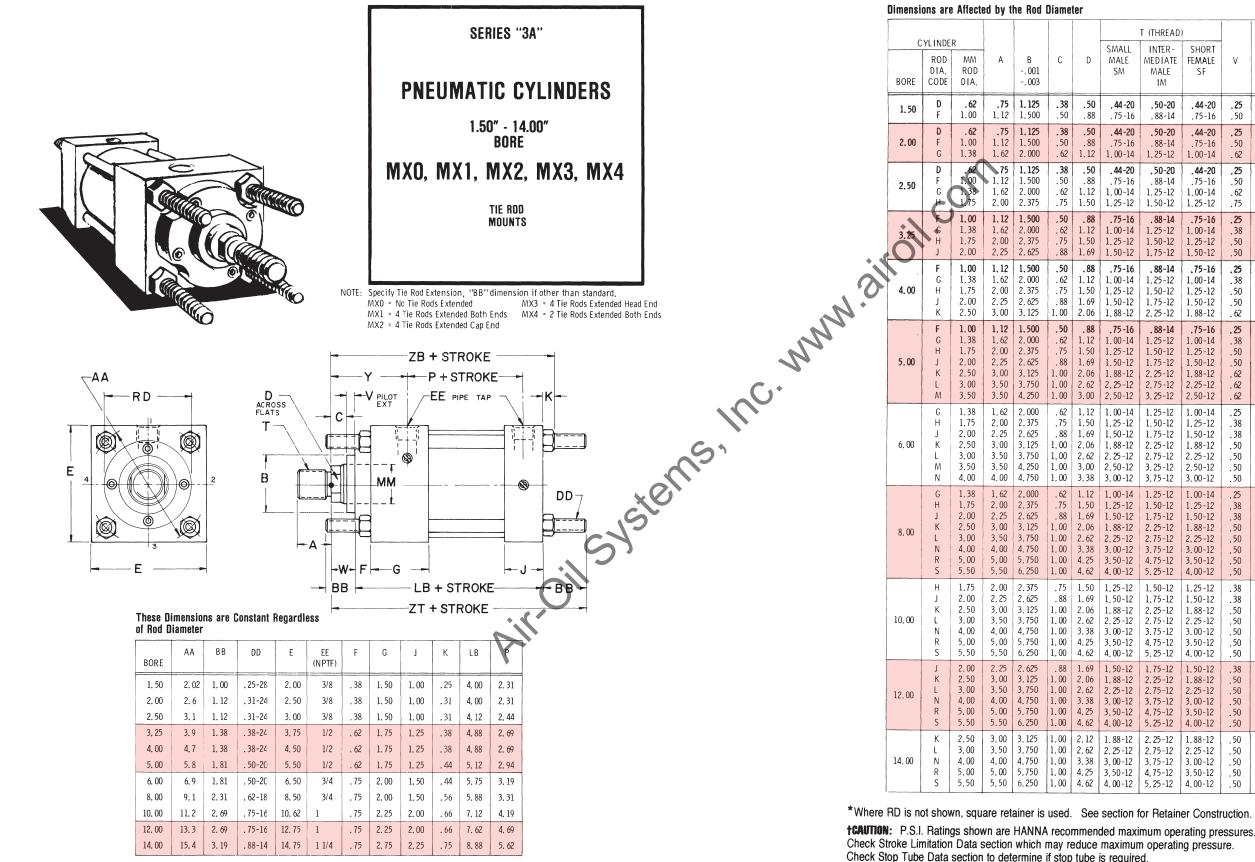
Ø

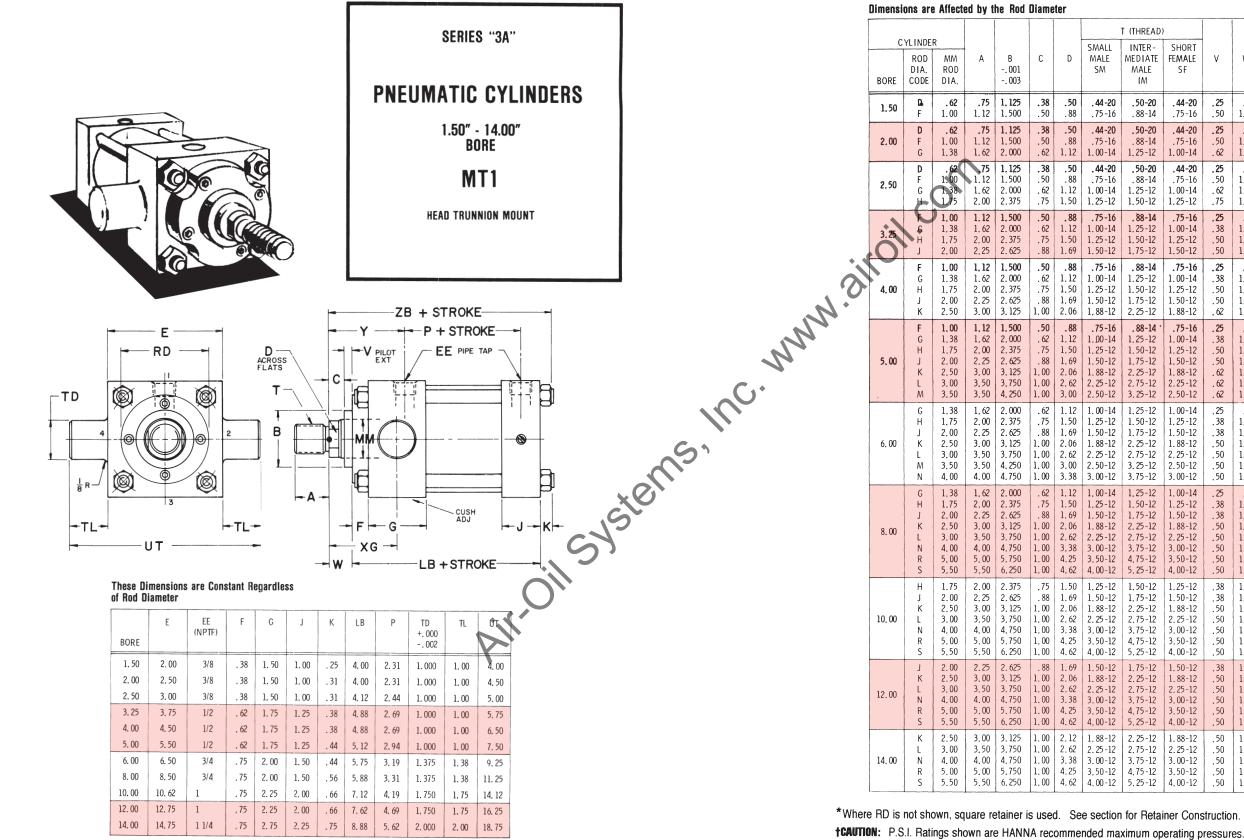

Ø

Dimensions are Affected by the Rod Diameter

		YLINDER								T (THREAD)							
	BORE	ROD DIA. CODE	MM ROD DIA.	A	B 001 003	C	D	RO*	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female SF	V	w	Y	ХК	ZJ	PSI RATING†
	1.50	D F	.62 1.00	.75 1.12	1.125 1.500	.38 .50	.50 .88	-	44-20 .75-16	.50-20 .88-14	.44-20 .75-16	.25 .50	.62 1.00	1.88 2.25	3.62 4.00	4.62 5.00	250 250
	2.00	D F G	.62 1.00 1.38	.75 1.12 1.62	1.125 1.500 2.000	.38 .50 .62	.50 .88 1.12	2.38 2.38 -	.44-20 .75-16 1.00-14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.88 2.25 2.50	3.62 4.00 4 25	4.62 5.00 5.25	250 250 250
	2.50	D F G H	62 1 00 1 38 1.75	.75 1.12 1.62 2.00	1.125 1.500 2.000 2.375	.38 .50 .62 .75	50 .88 1.12 1 50	2.38 2.38 - -	44-20 .75-16 1.00-14 1.25-12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.88 2 25 2.50 2.75	3.75 4 12 4.38 4.62	4.75 5.12 5.38 5.62	250 250 250 250
	3.25	G H J	 ▲1.00 1.38 1.75 2.00 	1.12 1.62 2.00 2.25	1.500 2.000 2.375 2.625	.50 .62 .75 .88	.88 1.12 1.50 1.69	3.00 3.00 - -	.75-16 1.00-14 1.25-12 1.50-12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	4.38 4.62 4.88 5.00	5.62 5.88 6.12 6.25	250 250 250 250
	A.00	F G H J K	1.00 1.38 1.75 2.00 2.50	1.12 1.62 2.00 2.25 3.00	1.500 2.000 2.375 2.625 3.125	.50 .62 .75 .88 1.00	.88 1.12 1.50 1.69 2.06	3.00 3.00 - -	.75-16 1.00-14 1.25-12 1 50-12 1.88-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	4.38 4.62 4.88 5.00 5.25	5.62 5.88 6.12 6.25 6.50	250 250 250 250 250
es in	5.00	F G H J K L M	1.00 1.38 1.75 2.00 2.50 3.00 3.50	1.12 1.62 2.00 2.25 3.00 3.50 3.50	1.500 2.000 2.375 2.625 3.125 3.750 4.250	.50 .62 .75 .88 1.00 1.00 1.00	.88 1.12 1.50 1.69 2.06 2.62 3.00	3.00 3.00 - - - -	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	4.62 4.88 6.12 5.25 5.50 5.50 5.50 5.50	5.88 6.12 6.38 6.50 6.75 6.75 6.75	250 250 250 250 250 250 250
sterns,	6.00	G H J K L M N	1.38 1.75 2.00 2.50 3.00 3.50 4.00	1.62 2.00 2.25 3.00 3.50 3.50 4.00	2.000 2.375 2.625 3.125 3.750 4.250 4.750	.62 .75 .88 1.00 1.00 1.00 1.00	1.12 1.50 1.69 2.06 2.62 3.00 3.38	4.00 4.00 4.00 - - - -	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	5.12 5.38 5.50 5.75 5.75 5.75 5.75 5.75	6.62 6.88 7.00 7.25 7.25 7.25 7.25 7.25	250 250 250 250 250 250 250

*Where RD is not shown, square retainer is used. See section for Retainer Construction.

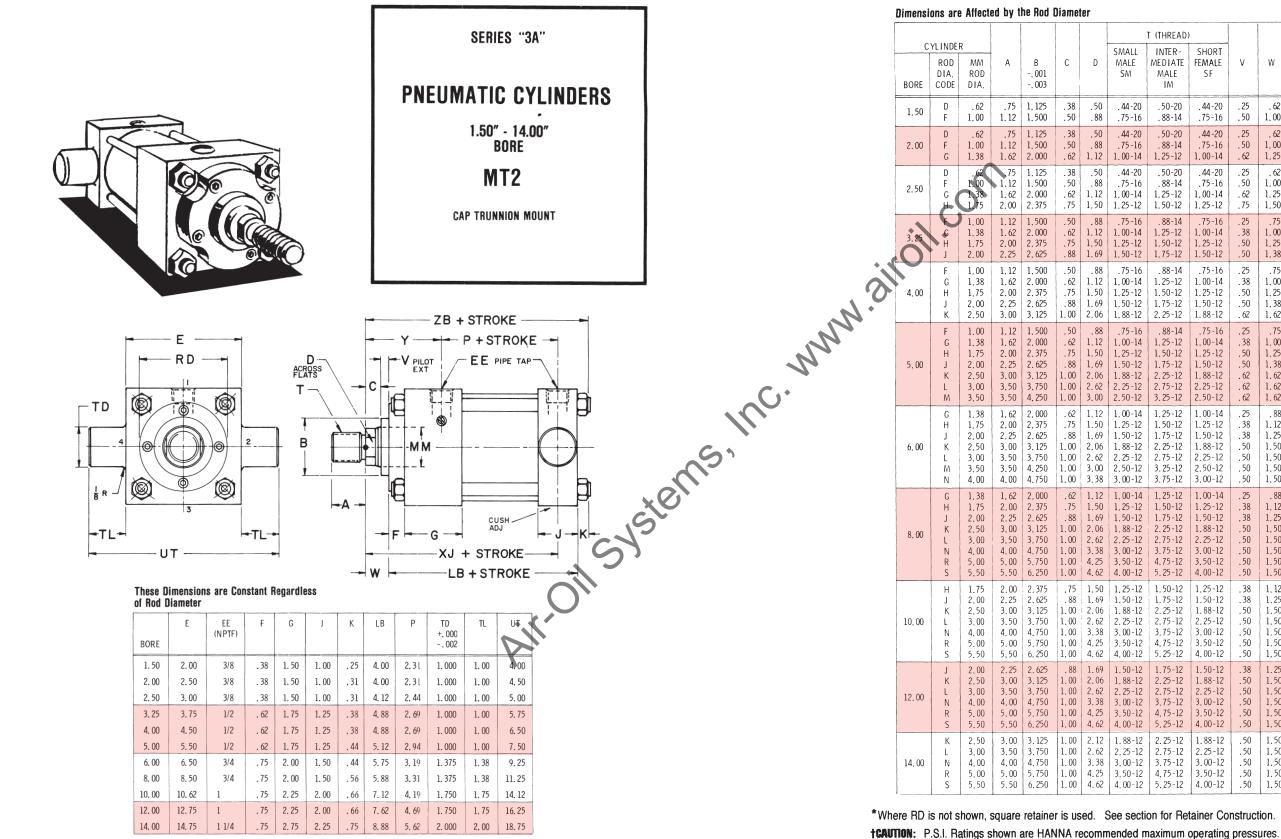

tCAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.



BORE	E	EE (NPTF)	F	FB +.005 000	6	J	K	LB	P	R ±.010	TF ±.010	UF
1.50 2.00 2.50	2 00 2 50 3.00	3/8 3/8 3/8	.38 .38 .38	.312 .375 .375	1.50 1.50 1.50	1 00 1 00 1.00	.25 31 31	4.00 4.00 4.12	2.31 2.31 2.44	1.43 1.84 2.19	2.75 3.38 3.88	3.38 4.12 4.62
3.25 4.00 5.00 6.00	3 75 4 50 5 50 6.50	1/2 1/2 1/2 3/4	.62 62 62 75	438 .438 .562 .562	1 75 1 75 1 75 2 00	1 25 1 25 1 25 1 25 1.50	38 38 44 .44	4 88 4.88 5.12 5 75	2.69 2.69 2.94 3.19	2.76 3.32 4.10 4.88	4.69 5.44 6.62 7.62	5.50 6.25 7 62 8.62

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

LL E	T (THREAD INTER- MEDIATE MALE IM	SHORT FEMALE SF	V	w	Y	ZB	ZT	RD≉	PSI RATING [†]
-20 -16	. 50-20 . 88-14	.44-20 .75-16	. 25 .50	. 62 1, 00	1.88 2.25	4.88 5.25	5. 62 6. 00		250 250
-20 -16 -14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.88 2.25 2.50	4.94 5.31 5.56	5.75 6.12 6.38	2.38 2.38	250 250 250
-20 -16 -14 -12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	5.88 6.25 6.50 6.75	2, 38 2, 38 	250 250 250 250
- 16 -14 -12 -12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	7.00 7.25 7.50 7.62	3.00 3.00 	250 250 250 250 250
-16 -14 -12 -12 -12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	6. 00 6. 25 6. 50 6. 62 6. 88	7.00 7.25 7.50 7.62 7.88	3.00 3.00 	250 250 250 250 250 250
-16 -14 -12 -12 -12 -12 -12 -12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	7.69 7.94 8.19 8.31 8.56 8.56 8.56	3.00 3.00	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	8.44 8.69 8.81 9.06 9.06 9.06 9.06	4.00 4.00 4.00 	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12 -12 -12	1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 75-12 4. 75-12 5. 25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2. 75 3. 00 3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	9.06 9.31 9.44 9.69 9.69 9.69 9.69 9.69	4. 00 4. 00 4. 00 5. 12 	250 250 250 250 250 250 250 250 250
-12 -12 -12 -12 -12 -12 -12 -12 -12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 38 . 38 . 50 . 50 . 50 . 50 . 50	1.12 1.25 1.50 1.50 1.50 1.50 1.50	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	10.94 11.06 11.31 11.31 11.31 11.31 11.31 11.31	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
-12 -12 -12 -12 -12 -12 -12 -12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	11.56 11.81 11.81 11.81 11.81 11.81 11.81	4. 00 5. 12 	150 150 150 150 150 150
-12 -12 -12 -12 -12 -12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	13.56 13.56 13.56 13.56 13.56 13.56	5. 12 	150 150 150 150 150 150

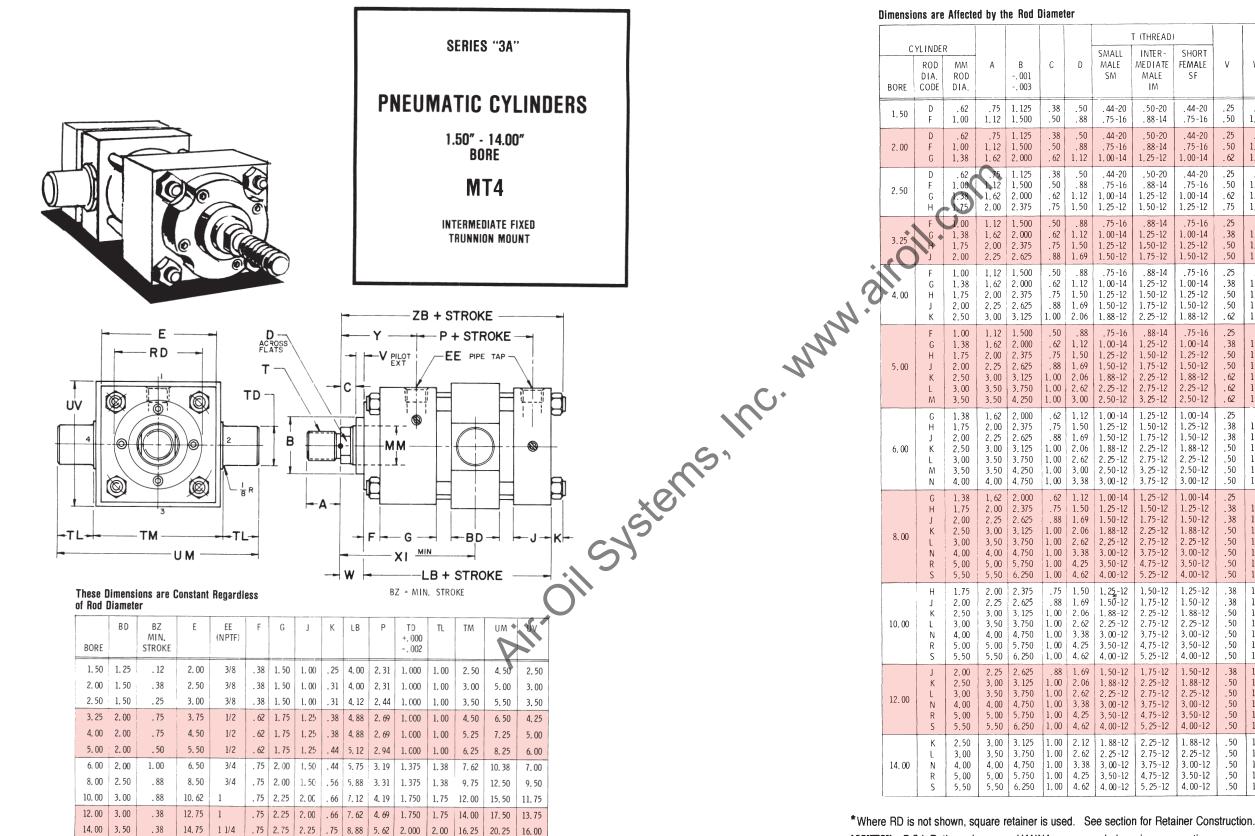


NOTE: Align and mount pillow blocks to avoid bending moments in Trunions.

Series 3A and 3AN Pneumatic Cylinders

L E	T (THREAD) INTER- MEDIATE MALE IM	SHORT FEMALE SF	V	w	XG	Y	ZB	RD*	PSI RATING [†]
20 16	.50-20 .88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	1.75 2.12	1.88 2.25	4.88 5.25		250 250
20 16 14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	1.75 2.12 2.38	1.88 2.25 2.50	4. 94 5. 31 5. 56	2.38 2.38	250 250 250
20 16 14 12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.75 2.12 2.38 2.62	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 	250 250 250 250 250
-16 -14 -12 -12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.25 2.50 2.75 2.88	2.38 2.62 2.88 3.00	6.00 6.25 6.50 6.62	3.00 3.00	250 250 250 250
-16 -14 -12 -12 -12	.88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.25 2.50 2.75 2.88 3.12	2. 38 2. 62 2. 88 3. 00 3. 25	6.00 6.25 6.50 6.62 6.88	3.00 3.00 	250 250 250 250 250 250
-16 -14 -12 -12 -12 -12 -12 -12	.88-14 · 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.25 2.50 2.75 2.88 3.12 3.12 3.12	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6.31 6.56 6.81 6.94 7.19 7.19 7.19	3.00 3.00 	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12 -12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.62 2.88 3.00 3.25 3.25 3.25 3.25 3.25	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4.00 4.00 4.00 	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12 -12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2. 62 2. 88 3. 00 3. 25 3. 25 3. 25 3. 25 3. 25 3. 25	2. 75 3. 00 3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 	250 250 250 250 250 250 250 250 250
-12 -12 -12 -12 -12 -12 -12 -12 -12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38 3.38	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
-12 -12 -12 -12 -12 -12 -12 -12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4. 00 5. 12 	150 150 150 150 150 150
-12 -12 -12 -12 -12 -12	2. 25-12 2. 75-12 3. 75-12 4. 75-12 5. 25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3. 62 3. 62 3. 62 3. 62 3. 62 3. 62	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 5. 12 	150 150 150 150 150

Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.



NOTE: Align and mount pillow blocks to avoid bending moments in Trunions.

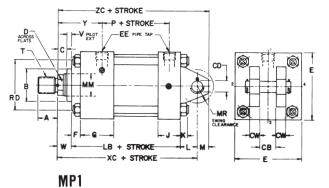
Series 3A and 3AN Pneumatic Cylinders

E	T (THREAD) INTER- MEDIATE MALE IM	SHORT FEMALE SF	v	w	٢X	Y	ZB	RD*	PSI RATING [†]
-20 -16	. 50-20 . 88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	4. 12 4. 50	1.88 2.25	4. 88 5. 25		250 250
-20 -16 -14	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	.62 1.00 1.25	4. 12 4. 50 4. 75	1.88 2.25 2.50	4. 94 5. 31 5. 56	2.38 2.38 	250 250 250
-20 -16 -14 -12	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	. 25 . 50 . 62 . 75	.62 1.00 1.25 1.50	4. 25 4. 62 4. 88 5. 12	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 	250 250 250 250
-16 -14 -12 -12	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	. 25 . 38 . 50 . 50	.75 1.00 1.25 1.38	5.00 5.25 5.50 5.62	2.38 2.62 2.88 3.00	6. 00 6. 25 6. 50 6. 62	3.00 3.00 	250 250 250 250
-16 -14 -12 -12 -12	. 88-14 1.25-12 1.50-12 1.75-12 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	5.00 5.25 5.50 5.62 5.88	2.38 2.62 2.88 3.00 3.25	6. 00 6. 25 6. 50 6. 62 6. 88	3.00 3.00 	250 250 250 250 250
-16 -14 -12 -12 -12 -12 -12 -12	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12 2. 75-12 3. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	5. 25 5. 50 5. 75 5. 88 6. 12 6. 12 6. 12	2. 38 2. 62 2. 88 3. 00 3. 25 3. 25 3. 25 3. 25	6. 31 6. 56 6. 81 6. 94 7. 19 7. 19 7. 19	3. 00 3. 00 	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	5.88 6.12 6.25 6.50 6.50 6.50 6.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4.00 4.00 4.00 	250 250 250 250 250 250 250 250
-14 -12 -12 -12 -12 -12 -12 -12 -12	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	6.00 6.25 6.38 6.62 6.62 6.62 6.62 6.62	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38 3.38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 	250 250 250 250 250 250 250 250 250
-12 -12 -12 -12 -12 -12 -12 -12	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	7.25 7.38 7.62 7.62 7.62 7.62 7.62 7.62	3.06 3.19 3.44 3.44 3.44 3.44 3.44 3.44	8. 94 9. 06 9. 31 9. 31 9. 31 9. 31 9. 31 9. 31	4.00 4.00 5.12 	150 150 150 150 150 150 150
-12 -12 -12 -12 -12 -12 -12	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	7.88 8.12 8.12 8.12 8.12 8.12 8.12 8.12	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4.00 5.12 	150 150 150 150 150 150 150
-12 -12 -12 -12 -12 -12	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	9.25 9.25 9.25 9.25 9.25 9.25	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 	150 150 150 150 150

Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required.

NOTE: Align and mount pillow blocks to avoid bending moments in Trunions.

Series 3A and 3AN Pneumatic Cylinders


T (THREAD)								
INTER- MEDIATE MALE IM	SHORT FEMALE SF	V	w	XI (MIN.)	Y	ZB	RD*	PSI RATING [†]
.50-20 .88-14	.44-20 .75-16	. 25 . 50	. 62 1. 00	3. 12 3. 50	1.88 2.25	4. 88 5. 25		250 250
.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	. 62 1. 00 1. 25	3. 25 3. 62 3. 88	1.88 2.25 2.50	4. 94 5. 31 5. 56	2.38 2.38 	250 250 250
.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	. 25 . 50 . 62 . 75	.62 1.00 1.25 1.50	3. 25 3. 62 3. 88 4. 12	1.88 2.25 2.50 2.75	5.06 5.44 5.69 5.94	2.38 2.38 	250 250 250 250
.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	. 25 . 38 . 50 . 50	.75 1.00 1.25 1.38	4. 12 4. 38 4. 62 4. 75	2, 38 2, 62 2, 88 3, 00	6. 00 6. 25 6. 50 6. 62	3.00 3.00 	250 250 250 250
. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	. 25 . 38 . 50 . 50 . 62	.75 1.00 1.25 1.38 1.62	4. 12 4. 38 4. 62 4. 75 5. 00	2. 38 2. 62 2. 88 3. 00 3. 25	6. 00 6. 25 6. 50 6. 62 6. 88	3.00 3.00 	250 250 250 250 250 250
.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	4. 12 4. 38 4. 62 4. 75 5. 00 5. 00 5. 00	2.38 2.62 2.88 3.00 3.25 3.25 3.25	6. 31 6. 56 6. 81 6. 94 7. 19 7. 19 7. 19	3.00 3.00 	250 250 250 250 250 250 250 250
1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	4.88 5.12 5.25 5.50 5.50 5.50 5.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.06 7.31 7.44 7.69 7.69 7.69 7.69	4. 00 4. 00 4. 00 	250 250 250 250 250 250 250 250
1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.25 .38 .38 .50 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	4.88 5.12 5.25 5.50 5.50 5.50 5.50 5.50 5.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38 3.38	7.31 7.56 7.69 7.94 7.94 7.94 7.94 7.94	4.00 4.00 4.00 5.12 	250 250 250 250 250 250 250 250 250
1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 38 . 38 . 50 . 50 . 50 . 50 . 50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	5. 62 5. 75 6. 00 6. 00 6. 00 6. 00 6. 00	3.06 3.19 3.44 3.44 3.44 3.44 3.44	8.94 9.06 9.31 9.31 9.31 9.31 9.31	4.00 4.00 5.12 	150 150 150 150 150 150 150
1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	5.75 6.00 6.00 6.00 6.00 6.00 6.00	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.56 9.81 9.81 9.81 9.81 9.81 9.81	4.00 5.12 	150 150 150 150 150 150
2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	6. 75 6. 75 6. 75 6. 75 6. 75 6. 75	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11. 19 11. 19 11. 19 11. 19 11. 19 11. 19	5. 12 	150 150 150 150 150 150

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure.

Check Stop Tube Data section to determine if stop tube is required.

Series 3A and 3AN Pneumatic Cylinders

These Dimensions are Constant Regardless

CW

. 50 2.00

. 50

. 50

. 62 3.75

. 62 4.50

. 62 5.50

. 75 6.50

. 75 8,50

1.00 10.62

E

2.50

3.00

EE

3/8

3/8 . 38 1.50 1.00 . 31

1/2

1/2

1/2

3/4

3/4

3/8 .38

. 38

. 62

(NPTF)

G

1.50 1.00

14.00 2.500 2.000 1.25 14.75 1 1/4 .75 2.75 2.25 .75 2.50 8.88 2.00 2.38 5.62 14.00

. 31

. 75 2.00 1.50 .56 1.50 5.88

1.00

. 75 2. 25 2. 00 . 66 2. 12 7. 12 1. 38 2. 00 4. 19 10. 00

.75 2.25 2.00 .66 2.25 7.62 1.75 2.12 4.69 12.00

1.38

3.31

8 00

CD

. 500

. 500

. 500

. 750

. 750

.750

1.000

1.375

12.00 2.500 1.750 1.25 12.75 1

of Rod Diameter

BORE

1.50

2.00

2,50

3.25

8.00

СВ

+.016

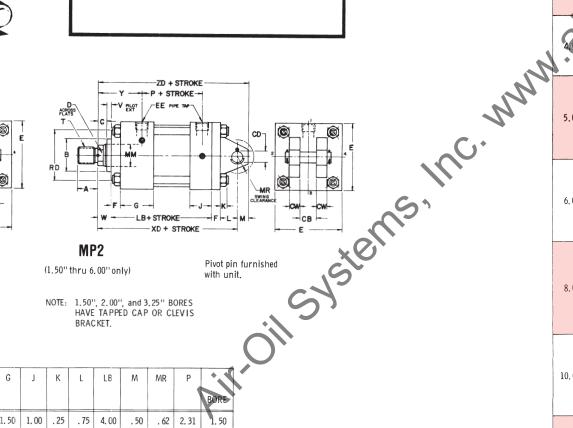
+.047

. 750

.750

.750

1.250


6.00 1.500 1.000

1.500

4.00 1.250

5.00 1.250

10.00 2.000

SERIES "3A"

PNEUMATIC CYLINDERS

1.50" - 14.00"

BORE

MP2

DETACHABLE CAP

CLEVIS MOUNT

MP1

CAP FIXED

CLEVIS MOUNT

Dimensions are Affected by the Rod Diameter CYLINDER SMALL MM MALE ROD Δ В С D ROD

> .75 1.125

.75 1.125

1.12 1.500

1.62

1.62

2.00

1.62 2.00

1.62

2.25

3.50

2.25

1,12

-.001

. 003

1.500

2.000

1,500

2.000

2.375

1,500

2.000

2.375

2.000

2.375

2.000

2.625

3.750

2.625

2.25 2.625

1.12 1,500

2.25 2.625 3.00 3.125

1.12 1.500

2.00 2.375

3.00 3.125

3.50 4.250

1.62 2.000 2.00 2.375

3.00 3.125

3.50 3.750

3.50 4.250

1.62 2.000

2.00 2.375

3.00 3.125

3.50 3.750

5.00 5.750

2.00 2.375

2.25 2.625

3.50 3.750

2.25 2.625 3.00 3.125

5.50 6.250

3.125

4.750

4.750

3.00

4.00

4.00

2.625

2.25

.75 1.125

.38 .50

. 38 .50

. 50

. 38

. 50

. 62

.50 . 88

. 62

.75 1.50

.50

. 62 .75

. 88 1.69

.50

. 62

.75

. 88 1.69

1.00 2.62

. 62 1.12

. 88 1.69

.75

. 88 1.69

5.50 6.250 1.00 4.62 4.00-12

. 88

1.00

 3.00
 3.125
 1.00
 2.06
 1.88-12

 3.50
 3.750
 1.00
 2.62
 2.25-12

1.00 2.06

.50 .88

. 88

.50

. 88

1.12

1.12

.75 1.50 1.25-12

.88 1.69 1.50-12

. 88

1.12

1.50

1.00 2.06 1.88-12

. 88

1.12

1,50

1.00 3.00 2.50-12

.75 1.50 1.25-12

1.00 2.06 1.88-12

1.00 2.62 2.25-12

1.00 3.00 2.50-12

. 62 1.12 1.00-14

1.00 2.06 1.88-12

1.00 2.62 2.25-12

1.00 2.06 1.88-12

1.00 2.62 2.25-12

1.00 3.38 3.00-12

3.38 3.00-12

.88 1.69 1.50-12 1.75

1.00 4.62 4.00-12 5.25

1.50 1.25-12

1.50-12

3.50-12

1.69 1.50-12 1.75

1.25-12 1.50

4.00 4.750 1.00 3.38 3.00-12 3.75-

4.00 4.750 1.00 3.38 3.00-12 3.75

.75 1.50

5.00 5.750 1.00 4.25 3.50-12 4.75

5.50 6.250 1.00 4.62 4.00-12 5.25

5.00 5.750 1.00 4.25 3.50-12 4.75

1.00 4.25

DIA.

CODE

D

F

D

G

D

F

G

Н

F

G

Н

Κ

Μ

G

Н

Κ

1

Μ

Ν

G Н

Κ

N

R

Н

J

Κ

Ν

R

S

J

Κ

L

Ν

R

S

L

DIA.

. 62

1.00

. **62** 1. 00

1.38

. 62

38

00

1.00

1.38

1.75

2.00

2.50

1.00

1.38

1.75

2.00 2.50

3.00

3.50

1.38

1.75

2.00

2.50

3.00

3,50

4.00

1.38

1.75

2,00

2,50

3.00

4.00

5.00

5.50

1.75

2.00

2.50

3.00

4.00

5.00

5.50

2,00

2.00 2.50 3.00

4.00

5.00

5,50

1.00 1.12

1.00

1,38

BORE

1.50

2.00

2.50

3.25

4.00

5.00

6.00

8.00

10.00

12.00

SM

. 44-20

.75-16

44-20

.75-16

. 44-20

.75-16

1.00-14

.75-16

1.00-14

1.25-12

.75-16

1.00-14

1.25-12

1.50-12

.75-16

1.00-14

1,25-12

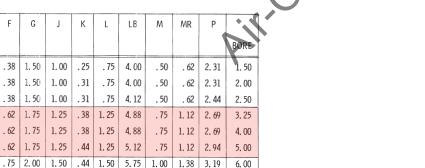
1.50-12

1.88-12

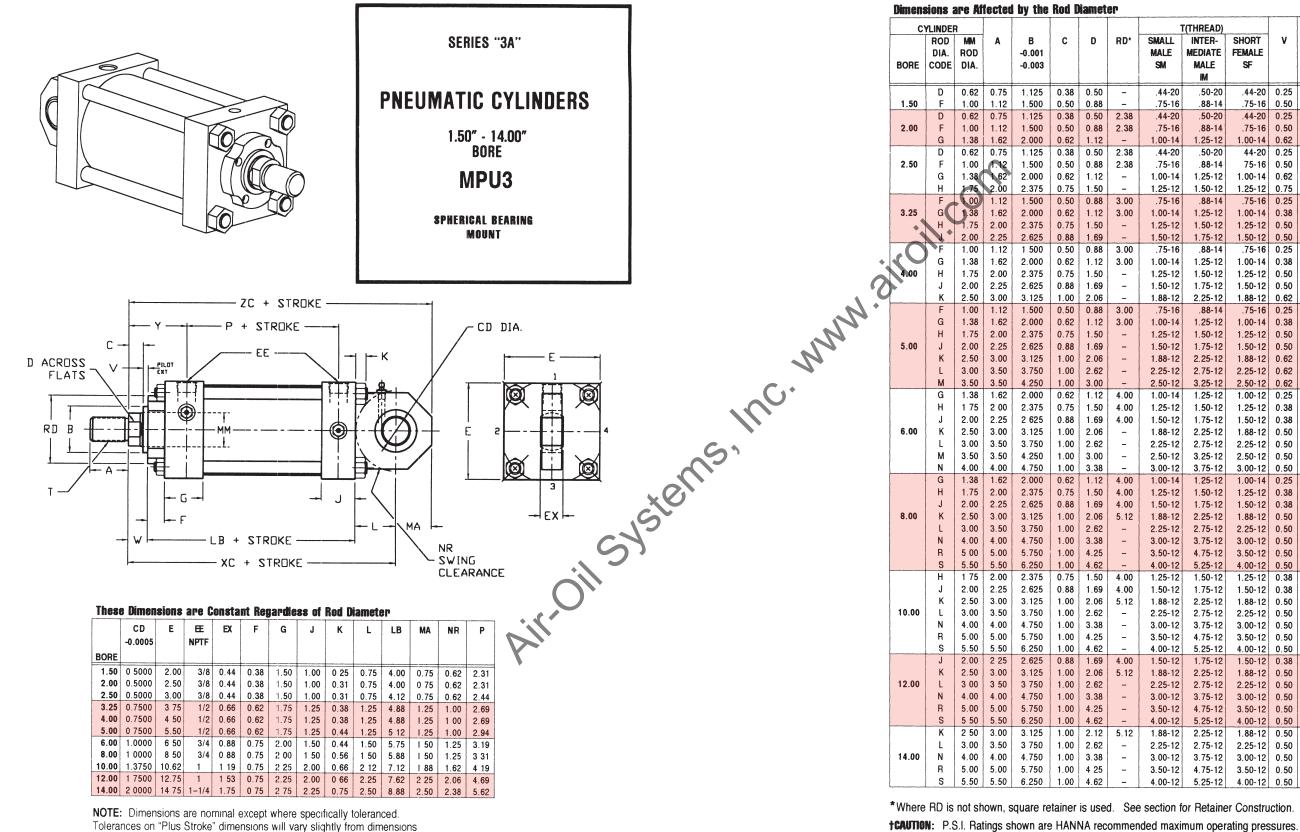
2.25-12

1.00-14

1.50-12


.62 1.12 1.00-14 1.25-

3.00 3.125 1.00 2.12 1.88-12 2.25 2.50 К 3.00 3.50 3.750 1.00 2.62 2.25-12 2.75 14.00 Ν 4.00 4.00 4.750 1.00 3.38 3.00-12 3.75 5.00 5.50 R 5.00 5.750 1.00 4.25 3.50-12 4.75 5.50 6.250 1.00 4.62 4.00-12 5.25

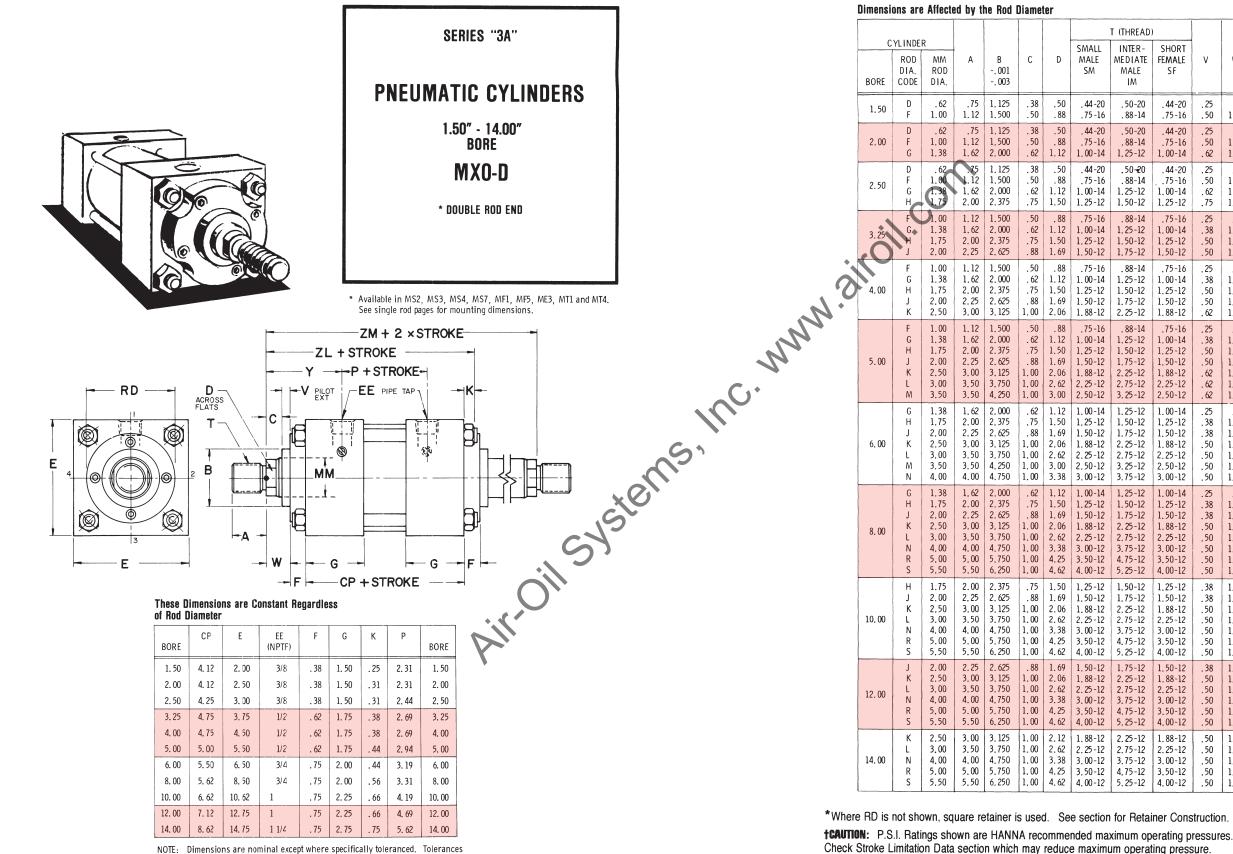

*Where RD is not shown, square retainer is used. See section for Retainer Construction.

†CAUTION: P.S.I. Ratings shown are HANNA recommended maximum operating pressures. Check Stroke Limitation Data section which may reduce maximum operating pressure. Check Stop Tube Data section to determine if stop tube is required

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

	T (THREAD)										
	INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	W	XC	XD	Y	zc	ZD	RD*	PSI RATING†
	. 50-20 . 88-14	. 44-20 .75-16	. 25 . 50	. 62 1. 00	5. 38 5. 75	5.75 6.12	1.88 2.25	5.88 6.25	6. 25 6. 62		250 250
	.50-20 .88-14 1.25-12	.44-20 .75-16 1.00-14	.25 .50 .62	, 62 1, 00 1, 25	5.38 5.75 6.00	5.75 6.12 6.38	1.88 2.25 2.50	5.88 6.25 6.50	6. 25 6. 62 6. 88	2.38 2.38	250 250 250
	.50-20 .88-14 1.25-12 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	5.50 5.88 6.12 6.38	5.88 6.25 6.50 6.75	1.88 2.25 2.50 2.75	6.00 6.38 6.62 6.88	6.38 6.75 7.00 7.25	2.38 2.38 	250 250 250 250
	.88-14 1.25-12 1.50-12 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	6.88 7.12 7.38 7.50	7.50 7.75 8.00 8.12	2.38 2.62 2.88 3.00	7.62 7.88 8.12 8.25	8.25 8.50 8.75 8.88	3.00 3.00 	250 250 250 250
-	. 88-14 1. 25-12 1. 50-12 1. 75-12 2. 25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	6.88 7.12 7.38 7.50 7.75	7.50 7.75 8.00 8.12 8.38	2.38 2.62 2.88 3.00 3.25	7.62 7.88 8.12 8.25 8.50	8. 25 8. 50 8. 75 8. 88 9. 12	3.00 3.00 	250 250 250 250 250 250
	.88-14 1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	.25 .38 .50 .50 .62 .62 .62	.75 1.00 1.25 1.38 1.62 1.62 1.62	7.12 7.38 7.62 7.75 8.00 8.00 8.00	7.75 8.00 8.25 8.38 8.62 8.62 8.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25	7.88 8.12 8.38 8.50 8.75 8.75 8.75 8.75	8.50 8.75 9.00 9.12 9.38 9.38 9.38	3.00 3.00 	250 250 250 250 250 250 250 250
	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.25-12 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	8. 12 8. 38 8. 50 8. 75 8. 75 8. 75 8. 75 8. 75	8.88 9.12 9.25 9.50 9.50 9.50 9.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	9. 12 9. 38 9. 50 9. 75 9. 75 9. 75 9. 75 9. 75	9.88 10.12 10.25 10.50 10.50 10.50 10.50	4.00 4.00 4.00 	250 250 250 250 250 250 250 250
	1.25-12 1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	8, 25 8, 50 8, 62 8, 88 8, 88 8, 88 8, 88 8, 88 8, 88 8, 88		2. 75 3. 00 3. 12 3. 38 3. 38 3. 38 3. 38 3. 38 3. 38	9.25 9.50 9.62 9.88 9.88 9.88 9.88 9.88 9.88		4.00 4.00 4.00 5.12 	250 250 250 250 250 250 250 250 250
	1.50-12 1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	10. 38 10. 50 10. 75 10. 75 10. 75 10. 75 10. 75		3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	11. 75 11. 88 12. 12 12. 12 12. 12 12. 12 12. 12 12. 12		4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
	1.75-12 2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 38 . 50 . 50 . 50 . 50 . 50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	11. 12 11. 38 11. 38 11. 38 11. 38 11. 38 11. 38		3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	12. 88 13. 12 13. 12 13. 12 13. 12 13. 12 13. 12 13. 12	 	4. 00 5. 12 	150 150 150 150 150 150
	2.25-12 2.75-12 3.75-12 4.75-12 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	12, 88 12, 88 12, 88 12, 88 12, 88 12, 88		3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	14. 88 14. 88 14. 88 14. 88 14. 88 14. 88	 	5. 12 	150 150 150 150 150 150

shown due to manufacturing tolerances and tube compression.


Series 3A and 3AN Pneumatic Cylinders

	(THREAD)							
SMALL	INTER-	SHORT	v	w	xc	Y	ZC	PSI
MALE	MEDIATE	FEMALE						RATING†
SM	MALE	SF						
	IM							
.44-20 .75-16	.50-20 .88-14	.44-20 .75-16	0.25	0.62	5.38 5.75	1.88 2.25	6.12 6.50	250 250
.44-20	.50-20	.44-20	0.25	0.62	5.38	1.88	6.12	250
.75-16	.88-14	.75-16	0.50	1.00	5.75	2.25	6.50	250
1.00-14	1.25-12	1.00-14	0.62	1.25	6.00	2.50	6.75	250
.44-20	.50-20	44-20	0.25	0.62	5.50	1.88	6.25	250
.75-16	.88-14	75-16	0.50	1.00	5.88	2.25	6.62	250
1.00-14	1.25-12	1.00-14	0.62	1.25	6.12	2.50	6.88	250
1.25-12	1.50-12	1.25-12	0.75	1.50	6.38	2.75	7.12	250
.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	0.25	0.75	6.88 7.12	2.38 2.62	8.12 8.38	250 250
1.25-12	1.50-12	1.25-12	0.50	1.25	7.38	2.88	8.62	250
1.50-12	1.75-12	1.50-12	0.50	1.38	7.50	3.00	8.75	250
.75-16	.88-14	.75-16	0.25	0.75	6.88	2.38	8.12	250
1.00-14	1.25-12	1.00-14	0.38	1.00	7.12	2.62	8.38	250
1.25-12	1.50-12	1.25-12	0.50	1.25	7.38	2.88	8.62	250
1.50-12	1.75-12	1.50-12	0.50	1.38	7.50	3.00	8.75	250
1.88-12	2.25-12	1.88-12	0.62	1.62	7.75	3.25	9.00	250
.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14	0.25 0.38	0.75	7.12 7.38	2.38 2.62	8.38 8.62	250 250
1.25-12	1.50-12	1.25-12	0.50	1.25	7.62	2.88	8.88	250
1.50-12	1.75-12	1.50-12	0.50	1.38	7.75	3.00	9.00	250
1.88-12	2.25-12	1.88-12	0.62	1.62	8.00	3.25	9.25	250
2.25-12	2.75-12	2.25-12	0.62	1.62	8.00	3.25	9.25	250
2.50-12	3.25-12	2.50-12	0.62	1.62	8.00	3.25	9.25	250
1.00-14	1.25-12	1.00-12	0.25	0.88	8.12	2.75	9.62	250
1.25-12	1.50-12	1.25-12	0.38	1.12	8.38	3.00	9.88	250
1.50-12	1.75-12	1.50-12	0.38	1.25	8.50	3.12	10.00	250
1.88-12 2.25-12	2.25-12	1.88-12	0.50	1.50	8.75	3.38	10.25	250
2.25-12	2.75-12 3.25-12	2.25-12 2.50-12	0.50 0.50	1.50 1.50	8.75 8.75	3.38 3.38	10.25 10.25	250 250
3.00-12	3.75-12	3.00-12	0.50	1.50	8.75	3.38	10.25	250
1.00-14	1.25-12	1.00-14	0.25	0.88	8.25	2.75	9.75	250
1.25-12	1.50-12	1.25-12	0.38	1.12	8.50	3.00	10.00	250
1.50-12	1.75-12	1.50-12	0.38	1.25	8.62	3.12	10.12	250
1.88-12	2.25-12	1.88-12	0.50	1.50	8.88	3.38	10.38	250
2.25-12	2.75-12	2.25-12	0.50	1.50	8.88	3.38	10.38	250
3.00-12	3.75-12	3.00-12	0.50	1.50	8.88	3.38	10.38	250
3.50-12 4.00-12	4.75-12 5.25-12	3.50-12 4.00-12	0.50	1.50 1.50	8.88 8.88	3.38 3.38	10.38 10.38	250 250
1.25-12	1.50-12	1.25-12	0.38	1.12	10.38	3.06	12.25	150
1.50-12	1.75-12	1.50-12	0.38	1.25	10.50	3.19	12.38	150
1.88-12	2.25-12	1.88-12	0.50	1.50	10.75	3.44	12.62	150
2.25-12	2.75-12	2.25-12	0.50	1.50	10.75	3.44	12.62	150
3.00-12	3.75-12	3.00-12	0.50	1.50	10.75	3.44	12.62	150
3.50-12 4.00-12	4.75-12	3.50-12 4.00-12	0.50	1.50	10.75 10.75	3.44	12.62	150
1.50-12	5.25-12 1.75-12	4.00-12	0.50	1.50	11.12	3.44 3.19	12.62 13.38	150 150
1.88-12	2.25-12	1.88-12	0.50	1.50	11.38	3.44	13.62	150
2.25-12	2.75-12	2.25-12	0.50	1.50	11.38	3.44	13.62	150
3.00-12	3.75-12	3.00-12	0.50	1.50	11.38	3.44	13.62	150
3.50-12	4.75-12	3.50-12	0.50	1.50	11.38	3.44	13.62	150
4.00-12	5.25-12	4.00-12	0.50	1.50	11.38	3.44	13.62	150
1.88-12	2.25-12	1.88-12	0.50	1.50	12.88	3.69	15.38	150
2.25-12	2.75-12	2.25-12	0.50	1.50	12.88	3.69	15.38	150
3.00-12 3.50-12	3.75-12 4.75-12	3.00-12 3.50-12	0.50 0.50	1.50 1.50	12.88 12.88	3.69 3.69	15.38 15.38	150 150
4.00-12	5.25-12	4.00-12	0.50	1.50	12.88	3.69	15.38	150
7.00-12	5.25-12	7.00-12	0.00	1.50	12.00	0.09	10.00	130

Check Stroke Limitation Data section which may reduce maximum operating pressure.

Check Stop Tube Data section to determine if stop tube is required.

Series 3A and 3AN Pneumatic Cylinders

Series 3A and 3AN Pneumatic Cylinders

on "Plus Stroke" dimensions will vary slightly from dimensions shown due to

manufacturing tolerances and tube compression.

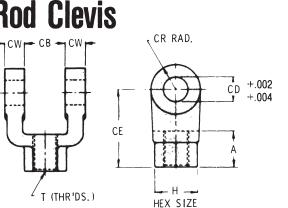
Series 3A and 3AN Pneumatic Cylinders

T (THREAD) INTER - MEDIATE MALE IM	SHORT FEMALE SF	V	W	Y	ZL	ZM	RD*	PSI RATING [†]
0 .50-20 6 .88-14	. 44-20 .75-16	. 25 . 50	. 62 1. 00	1.88 2.25	5.75 6.12	6. 12 6. 88		250 250
0 .50-20 6 .88-14 4 1.25-12	.44-20 .75-16 1.00-14	. 25 . 50 . 62	.62 1.00 1.25	1.88 2.25 2.50	5.44 5.81 6.44	6. 12 6. 88 7. 38	2.38 2.38 	250 250 250
0 .50-20 6 .88-14 4 1.25-12 2 1.50-12	.44-20 .75-16 1.00-14 1.25-12	.25 .50 .62 .75	.62 1.00 1.25 1.50	1.88 2.25 2.50 2.75	5.56 5.94 6.56 6.81	6.25 7.00 7.50 8.00	2. 38 2. 38 	250 250 250 250
6 .88-14 4 1.25-12 2 1.50-12 2 1.75-12	.75-16 1.00-14 1.25-12 1.50-12	.25 .38 .50 .50	.75 1.00 1.25 1.38	2.38 2.62 2.88 3.00	6.50 6.75 7.62 7.75	7.50 8.00 8.50 8.75	3.00 3.00 	250 250 250 250
6 .88-14 4 1.25-12 2 1.50-12 2 1.75-12 2 2.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12	.25 .38 .50 .50 .62	.75 1.00 1.25 1.38 1.62	2.38 2.62 2.88 3.00 3.25	6.50 6.75 7.62 7.75 8.00	7.50 8.00 8.50 8.75 9.25	3.00 3.00 	250 250 250 250 250
6 .88-14 4 1.25-12 2 1.50-12 2 1.75-12 2 2.25-12 2 2.75-12 2 3.25-12	.75-16 1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12	. 25 . 38 . 50 . 50 . 62 . 62 . 62 . 62	.75 1.00 1.25 1.38 1.62 1.62 1.62	2.38 2.62 2.88 3.00 3.25 3.25 3.25 3.25	6.81 7.06 7.94 8.06 8.31 8.31 8.31	7.75 8.25 8.75 9.00 9.50 9.50 9.50	3. 00 3. 00 	250 250 250 250 250 250 250 250
4 1.25-12 2 1.50-12 2 1.75-12 2 2.25-12 2 2.75-12 2 3.25-12 2 3.75-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 3.00-12	.25 .38 .38 .50 .50 .50 .50	.88 1.12 1.25 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38	7.56 7.81 7.94 8.94 8.94 8.94 8.94 8.94	8.75 9.25 9.50 10.00 10.00 10.00 10.00	4.00 4.00 4.00	250 250 250 250 250 250 250 250
4 1.25-12 2 1.50-12 2 1.75-12 2 2.25-12 2 2.75-12 2 3.75-12 2 4.75-12 2 5.25-12	1.00-14 1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	. 25 . 38 . 38 . 50 . 50 . 50 . 50 . 50	.88 1.12 1.25 1.50 1.50 1.50 1.50 1.50	2.75 3.00 3.12 3.38 3.38 3.38 3.38 3.38 3.38 3.38	7.81 8.06 8.19 8.44 8.44 8.44 8.44 8.44 8.44	8.88 9.38 9.62 10.12 10.12 10.12 10.12 10.12 10.12	4. 00 4. 00 4. 00 5. 12	250 250 250 250 250 250 250 250 250
2 1.50-12 2 1.75-12 2 2.25-12 2 2.75-12 2 3.75-12 2 4.75-12 2 5.25-12	1.25-12 1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .38 .50 .50 .50 .50 .50	1.12 1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 06 3. 19 3. 44 3. 44 3. 44 3. 44 3. 44	9.16 9.28 9.53 9.53 9.53 9.53 9.53 9.53	10. 38 10. 62 11. 12 11. 12 11. 12 11. 12 11. 12 11. 12	4. 00 4. 00 5. 12 	150 150 150 150 150 150 150
2 1.75-12 2 2.25-12 2 2.75-12 2 3.75-12 2 4.75-12 2 5.25-12	1.50-12 1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.38 .50 .50 .50 .50 .50	1.25 1.50 1.50 1.50 1.50 1.50 1.50	3. 19 3. 44 3. 44 3. 44 3. 44 3. 44 3. 44	9.78 10.03 10.03 10.03 10.03 10.03 10.03	11. 12 11. 62 11. 62 11. 62 11. 62 11. 62 11. 62	4. 00 5. 12 	150 150 150 150 150 150
2 2.25-12 2 2.75-12 2 3.75-12 2 4.75-12 2 4.75-12 2 5.25-12	1.88-12 2.25-12 3.00-12 3.50-12 4.00-12	.50 .50 .50 .50 .50	1.50 1.50 1.50 1.50 1.50 1.50	3. 69 3. 69 3. 69 3. 69 3. 69 3. 69	11.62 11.62 11.62 11.62 11.62 11.62	13. 12 13. 12 13. 12 13. 12 13. 12 13. 12 13. 12	5. 12 	150 150 150 150 150

Check Stop Tube Data section to determine if stop tube is required.

MOUNTING ACCESSORIES

***CAUTION:**


load for that accessory.

ROD EYE PISTON ROD

. CA

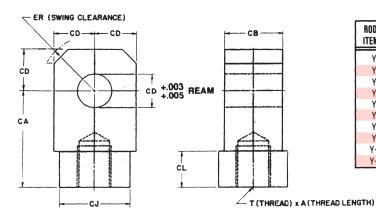
These are standard accessories matched to bore size and piston rod code. The Mounting Bracket fits the cap end of Model MP1. The Bracket also fits the piston Rod Clevis with the same number (i.e. B-7 Bracket fits V-7 Rod Clevis). The pin is furnished with Model MP1 and fits the bracket, however, specify if additional pins are required. Pins also fit rod clevis and rod eyes. If you require accessories other than standard for that bore size or piston rod, specify the item number on your order.

Rod Clevis

ROD CLEVIS Item No.	PISTON ROD Code	A	CB	CD	CE	CR	CW	H	T	*LBS. Capacity
V-1	D	75	75	50	1.50	.62	50	1 00	.44-20	5,360
V-2	F	1.12	1 25	.75	2 38	88	.62	1.25	75-16	14,000
V-3	G	1 62	1 50	1.00	3 12	1 12	75	1.75	1 00-14	22,500
V-4	н	2 00	2 00	1 37	4 12	1 62	1 00	2.00	1 25-12	41,250
V-5	J	2 25	2 50	1 75	4.50	2 00	1.25	2 75	1 50-12	57,000
V-6	K	3.00	2 50	2 00	5 50	2 25	1 25	3 00	1 88-12	75,000
V-7	L	3 50	3.00	2 50	6 50	2 88	1.50	3 50	2.25-12	112,500
V-8	M	3 50	3 00	3 00	6.75	3.12	1 50	3.88	2.50-12	135,000
V-10	Р	4 50	4.00	3 50	8.50	3 88	2 00	5.00	3.25-12	210,000
V-12	S	5 50	4.50	4 00	10 00	4 38	2.25	6.19	4 00-12	270,000

Accessory load rating may be lower than maximum

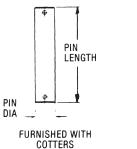
ratings are in pounds. Before specifying, compare

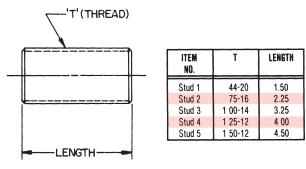

maximum operating pull force in pounds developed

by cylinder with load rating of accessory. Accessory

load rating is the maximum recommended operating

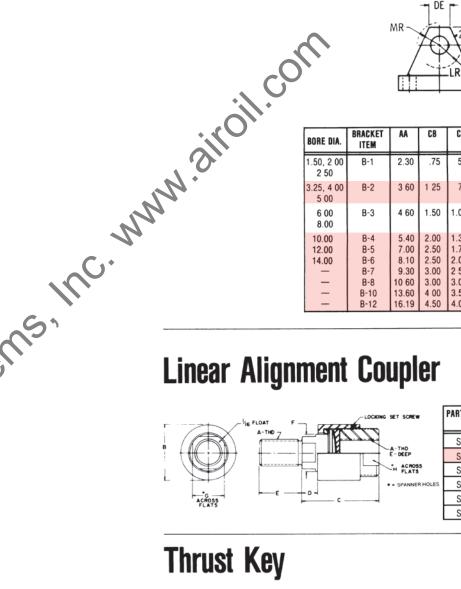
force available from cylinder. Accessories load


Rod Eye

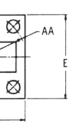

T

Pin

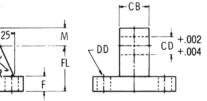
	PIN Item No.	LENGTH	DIAMETER	*LBS. Capacity
	P1	2.28	50	6,125
T 11	P2	3.09	.75	13,800
TH	P3	3 60	1 00	24,500
	P4	4.66	1 37	46,500
	P5	5.66	1 75	75,150
	P6	5 72	2 00	98,150
	P7	6.94	2 50	153,400
	P8	7 19	3 00	220,900
н	P10	9.31	3.50	300,650
	P12	10.31	4.00	307,850


Piston Rod Stud

Series 3A and 3AN Pneumatic Cylinders


-

Ē



Brackets

Series 3A and 3AN Pneumatic Cylinders

Ø

CD	DD	DE	E	F	FL	LR	M	MR	*LBS.
									CAPACITY
500	.44	.56	2.50	.38	1.12	.62	50	.62	2,500
750	.56	.88	3 50	62	1.88	.88	75	.88	6,300
.000	.69	1 38	4.50	.75	2.25	1 25	1 00	1.25	10,000
375	.69	1.75	5.00	88	3.00	1.75	1.38	1 75	19,250
.750	94	2.25	6.50	.88	3 12	2 12	1.75	2.12	21,200
.000	1.06	2.56	7.50	1.00	3.50	2 38	2.00	2.38	24,500
500	1 19	3.12	8.50	1.00	4.00	2.94	2.50	2.94	25,000
000	1.31	3.25	9 50	1.00	4.25	3 19	2 75	3.19	22,500
500	1 81		12.62	1.69	7 25	3 62	3.50	3.62	58,500
.000	2.06		14.88	1 94	7.75	4 12	4.00	4.12	73,250

RT NO.	A	В	C	D	E	F	6	H	MAX. PULL Load
S-1	7/16 - 20	1-1/4	2	1/2	3/4	5/8	1/2	13/16	2,535
S-2	3/4 - 16	1-3/4	2-5/16	1/2	1-1/8	31/32	13/16	1-1/8	8,750
S-3	1 - 14	2-1/2	2-15/16	17/32	1-5/8	1-11/32	1-5/32	1-5/8	16,125
S-4	1-1/4 - 12	2-1/2	2-15/16	17/32	1-5/8	1-11/32	1-5/32	1-5/8	19,600
S-5	1-1/2 - 12	3-1/4	4-3/8	7/8	2-1/4	1-31/32	1-3/4	2-3/8	34,000
S-6	1-7/8 - 12	3-3/4	5-5/8	1	3	2-15/32	_	-	41,250

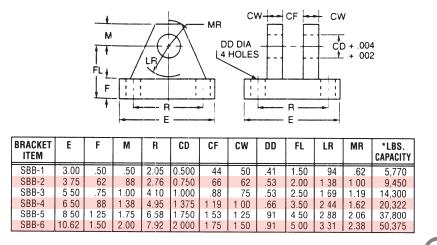
F/2 +.03 -.00


- F -.0140 -.0145 Thrust keys are available on most side type mountings. Please refer to model dimension charts for F dimensions. A thrust key eliminates the need for fitted bolts or external keys. It adds extra rigidity to your cylinder mounting when the key is fitted to a keyway milled into your mounting surface.

TECHNICAL INFORMATION

Series 3A and 3AN Pneumatic Cylinders

Spherical Rod Eyes


Order to fit Piston Rod thread size.

ROD EYE Item No.	CD -0.0005	A	CE	EX	ER	LE	Т	JL	*LBS. Capacity
SBY-1	0 5000	69	88	.44	88	.75	44-20	.88	2,644
SBY-2	0 7500	1 00	1.25	.66	1.25	1.06	75-16	1.31	9,441
SBY-3	1.0000	1 50	1.88	88	1 38	1.44	1 00-14	1.50	16,860
SBY-4	1.3750	2.00	2.13	1 19	1.81	1 88	1.25-12	2 00	28,562
SBY-5	1 7500	2 13	2.50	1 53	2 1 9	2.13	1 50-12	2.25	43,005
SBY-6	2 0000	2 88	2 75	1.75	2.63	2 50	1.88-12	2 75	70,193

Spherical Clevis Brackets

Order to fit Mounting Plate or Rod Eye.

Pivot Pins

CL

Pivot Pins are furnished with two retainer rings.

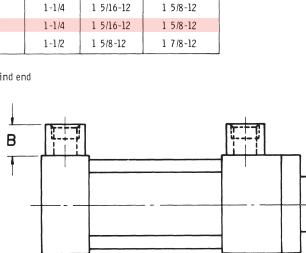
п	PIN Tem No.	CD	CL	*LBS. Capacity
Γ	SBP-1	.49970004	1.56	8,600
	SBP-2	.74970005	2.03	19,300
	SBP-3	.99970005	2.50	34,300
	SBP-4	1 37460006	3 31	65,000
	SBP-5	1 74960006	4 22	105,200
	SBP-6	1 9996- 0007	4.94	137,400

***CAUTION**

Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.

DESCRIPTION

Port Size and Location
Retainer Plate Construction
Force Chart
Stroke Limitation Data
Stop Tube Data
Cylinder Cushions


PIPE PORT SIZE & LOCATION

Numbers 1, 2, 3 and 4 around end view of cylinder drawings are for describing optional pipe port locations Position 1 is standard. In many cases ports can be positioned at 2, 3 or 4 by rotating the heads at assembly. In other cases where it is undesirable to rotate the heads because of corresponding rotation of cylinder mountings, additional ports can usually be placed at positions 2, 3 or 4. Orders or inquiries should state port locations for rod and cap end heads, if er than standard. When changing port locations, careful attention should be paid to clearance between pipes, cylinder mountings, and the heads of any nounting screws.

Standard N. P. T. dryseal ports will be supplied at position 1. Orders should state pipe port locations if other than standard. S.A.E. straight thread ports and bossed ports are available. Refer to the charts below to select the appropriate port.

		SERIES "3A" (PTIONAL F	ORTING
BORE	STANDARD NPT PORT	OVERSIZE BOSSED NPT*	DIM B	STANDARD SAE PORT
1.50	3/8	1/2	15/16	9/16-18
2.00	3/8	1/2	15/16	9/16-18
2.50	3/8	1/2	15/16	9/16-18
3,25	1/2	3/4	15/16	7/8-14
4.00	1/2	3/4	15/16	7/8-14
5.00	1/2	3/4	15/16	7/8-14
6.00	3/4	1	1-1/8	
8.00	3/4	1	1-1/8	1 1/16-12
10.00	1	1-1/4	1-1/4	1 5/16-12
12.00	1	1-1/4	1-1/4	1 5/16-12
14.00	1-1/4	1-1/2	1-1/2	1 5/8-12

*Available at Position #5, rear face blind end

OVERSIZE*

BOSSED SAE

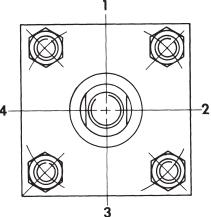
7/8-14

7/8-14

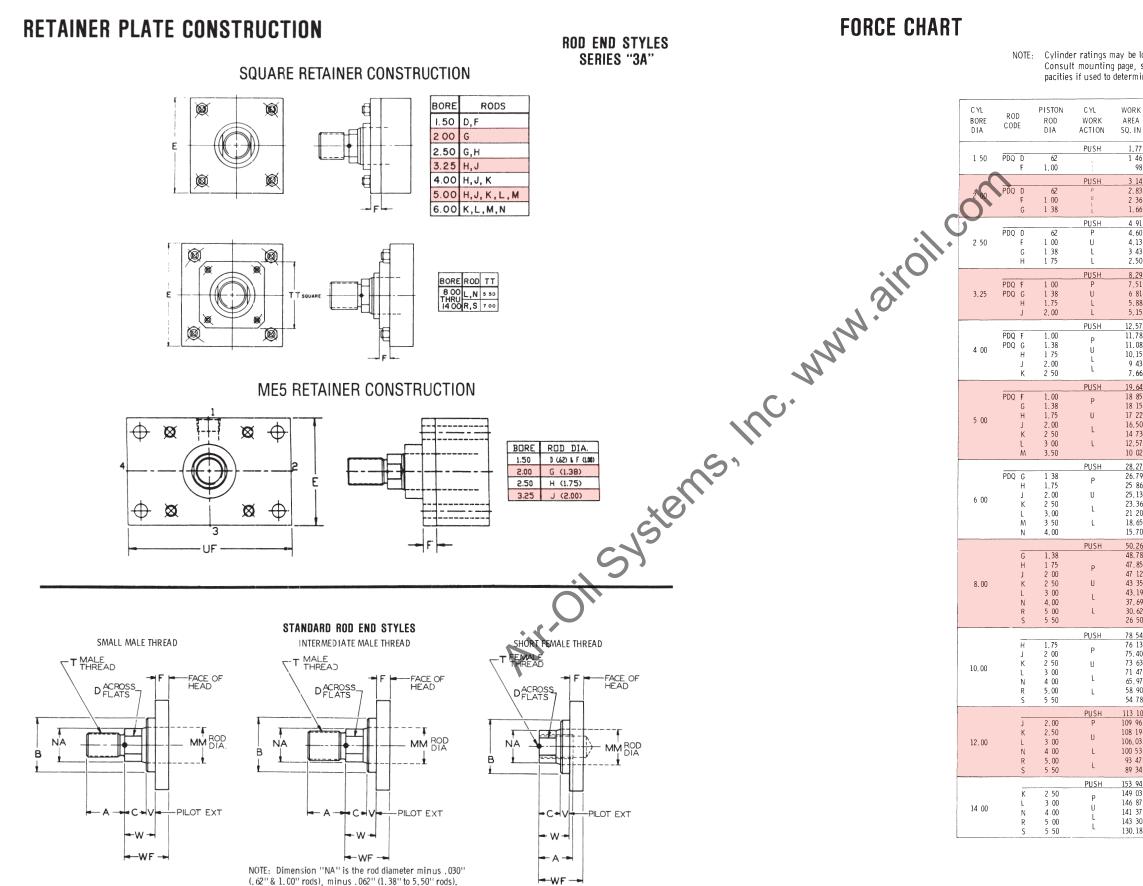
7/8-14

1 1/16-12

1 1/16-12


1 1/16-12 1 5/16-12 1 5/16-12

systems, mc.


PAGE

 167
 169
 170
 171
 172

PIPE PORT NUMBERING AND POSITIONING

Postion location for both the Front Head and Blind Head is determined by viewing the cylinder at the Rod End.

For actual dimensions, see mounting style page desired.

1.50" THROUGH 14.00" CYLINDER CAPACITY

NOTE: Cylinder ratings may be lower than pressures shown in force charts. Consult mounting page, stroke limitation data and any accessory capacities if used to determine maximum permissible operating pressure.

к – 4		- PNEUM	ATIC PRE	SSURE —		FLUID REQUIRED PER INCH OF STROKE
N	50	70	90	100	150	CU FT
7	89	124	160	177	266	. 00102
46	73	102	131	146	219	00084
+0 98	49	69	88	98	147	00057
14						
1 <u>4</u> 33	157 142	220	283	314	471 424	. 00182
35 36	142	198 165	255 212	283 236	354	00164 00136
50 56	83	116	149	166	249	00130
91	245	344	442	491	736	. 00284
50	230	322	414	460	690	00266
13 13	206 172	289 240	372 309	413 343	620 515	00239 00198
•5 50	125	175	225	250	375	00198
9	414	580	746	829	1244	. 00480
51	375	525	676	751	1126	. 00435
31 38	340 294	477 412	613 529	681 588	1022 882	00394 00341
15	258	360	464	515	772	00298
57	628	880	1131	1257	1886	00727
78 08	589 554	825 776	1060 997	1178 1108	1767 1662	00682 00641
J8 15	508	710	997 914	1015	1522	00588
13	472	660	914 849	943	1922	. 00545
+J 56	383	536	689	766	11410	00443
					2946	
<u>54</u> 35	<u>982</u> 942	<u>1375</u> 1319	<u>1768</u> 1696	1964 1885	2946	.01136 01091
15	942	1270	1633	1815	2722	01050
22	861	1205	1550	1722	2583	00997
50	825	1155	1485	1650	2475	00954
13	737	1031	1326	1473	2210	00852
57	628	880	1131	1257	1885	00727
02	501	701	902	1002	1503	00580
27	1413	1979	2544	2827	4240	01636
79	1339	1875	2411	2679	4018	01550
86	1293	1810	2327	2586	3879	01497
13	1256	1759	2262	2513	3770	01454
36	1168	1635	2102	2336	3504	. 01352
20	1060	1484	1908	2120	3180	. 01227
65 70	933 785	1306 1099	1678 1413	1865 1570	2798 2355	01079
26	2513	3518	4523	5026	7539	02909
78 or	2439	3415	4390	4878	7317	02823
85	2392	3350 3298	4306 4241	47 85 47 12	7178 7068	02770 .02727
12 35	2356 2268	3174	4241 4082	47 12 45 35	6804	02625
19	2160	3023	3887	4319	6478	02500
69	1884	2638	3392	3769	5655	02182
62	1531	2143	2756	3062	4593	01773
50	1325	1855	2385	2650	3975	. 01534
54	3927	5498	7069	7854	11781	04545
13	3806	5329	6852	7613	11420	04406
40	3770	5279	6787	7540	11310	04363
63	3681	5154	6627	7363	11044	04261
47	3573	5003	6432	7147	10720	04136
97	3298	4618	5937	6597	9896	03818
90 78	2945 2739	4123 3835	5301 4930	5890 5478	8835 8217	03409 03170
10	5655	7917	10179	11310	16965	. 06545
96	5498	7697	9896 9737	10996	16494	06363
.9)3	5409 5302	7573 7422	97 <i>37</i> 9543	10819 10603	16228 15904	06261 06136
53 53	5026	7422	9545 9048	100053	15904	05818
17 17	4673	6543	8412	9347	14020	05409
34	4467	6254	8041	8934	13401	05170
			13855		23091	0891
94)3	7 697 7 452	10776 10432	13855	15394	223091	0891
35 37	7344	10432	13413	14903	22000	0850
37	7068	9896	12723	14137	21205	0818
30	6715	9401	12087	13430	20145	0777
18	6509	9113	11716	13018	19527	0753

STROKE LIMITATION DATA

The rod diameter has to be capable of withstanding any compressive force developed by the cylinder working against the load. A piston rod diameter with adequate column strength to handle the compressive force of the application can be selected from the convenient pre-calculated chart below.

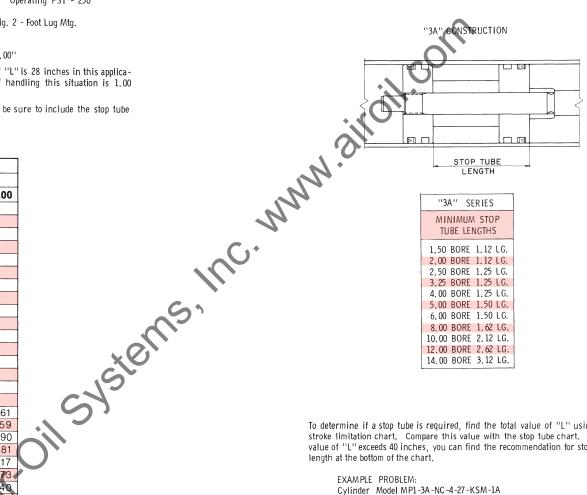
NOTE: See application figures on next page.

To use this chart find the force value, developed by the application, in the left column. Next, select the figure which resembles your application and then multiply "D" times the factor given in that figure. Finally, opposite the corresponding force value, find the value of "L" which is equal to, or greater than, the figure derived from factoring "D". Directly above is the rod diameter which is capable of with standing the forces developed in the application.

EXAMPLE Cylinder Bore = 4.00" Operating PSI = 250 Force Value 3140 lbs. Application - Resembles Fig. 2 - Foot Lug Mtg. Stroke = 40" "L" = 0.7 x 40; L = 28" Correct Rod Diameter = 1.00"

The total force is 3140 lbs., and the value of "L" is 28 inches in this application. The smallest diameter rod capable of handling this situation is 1.00 inches

If a stop tube is required for the application be sure to include the stop tube length when determining the length of "D".


FORCE				VA	ALUE	OF "L	" IN IN	CHES	5				
VALUE	PISTON ROD DIAMETER												
in pounds	.62	.62 1.00 1.38 1.75 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 7.0							7.00				
100	66												
200	47												
400	33	85											
600	27	70	132										
800	24	60	114	184			_						
1000	21	54	102	165	215								
1300	18	47	90	1.45	188								
1700	16	41	78	1.27	165	258							
2100	14	37	71	114	149	232							
2500	13	34	65	104	136	213	304						
3000	12	31	58	95	124	192	280	381					
4000	10	27	51	83	108	162	242	330	430				
5000	9	24	46	74	96	150	217	295	385				
6000	8	22	42	67	89	137	198	269	352	443			
8000	7	19	36	58	76	119	172	233	305	384	475		
10000		17	32	52	68	106	153	209	273	344	426	514	
12000		15	29	48	62	97	139	190	249	314	328	468	761
16000		13	26	.42	54	84	121	165	215	272	316	407	659
20000			23	38	48	75	109	148	193	243	301	365	590
30000			18	31	39	61	89	120	153	198	245	297	481
40000				27	34	53	77	104	136	172	213	257	417
50000				23	31	48	69	93	122	153	190	230	373
60000				21	28	44	63	85	111	140	174	210	340
80000					24	38	54	74	96	122	143	192	295
100000						34	48	66	86	109	132	163	264
120000						31	44	60	79	100	121	142	240
140000							41	56	73	92	112	135	223
160000							38	52	63	86	105	129	209
200000								47	61	77	93	115	187
250000								42	54	69	84	103	167
300000													152
350000													141
400000													131
500000													118

If a stop tube is required for the application be sure to include the stop tube length when determining the length of "D".

STOP TUBE DATA

Long stroke cylinders can be subjected to a buckling action and excessive bearing wear due to the weight of the exposed rod. To reduce wear a stop tube is recommended.

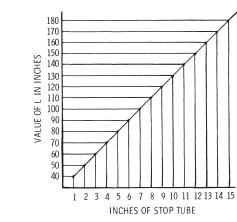
All cylinders cushioned and non-cushioned are supplied with the double piston construction. General construction of cylinder stop tube is illustrated below.

To determine if a stop tube is required, find the total value of "L" using the stroke limitation chart. Compare this value with the stop tube chart. If the value of "L" exceeds 40 inches, you can find the recommendation for stop tube length at the bottom of the chart.

EXAMPLE PROBLEM:
Cylinder Model MP1-3A -NC -4-27 -KSM-1A
Accessory - V-6 Clevis
Pressure - 250 PSI
Clevis Mount - Horizontal

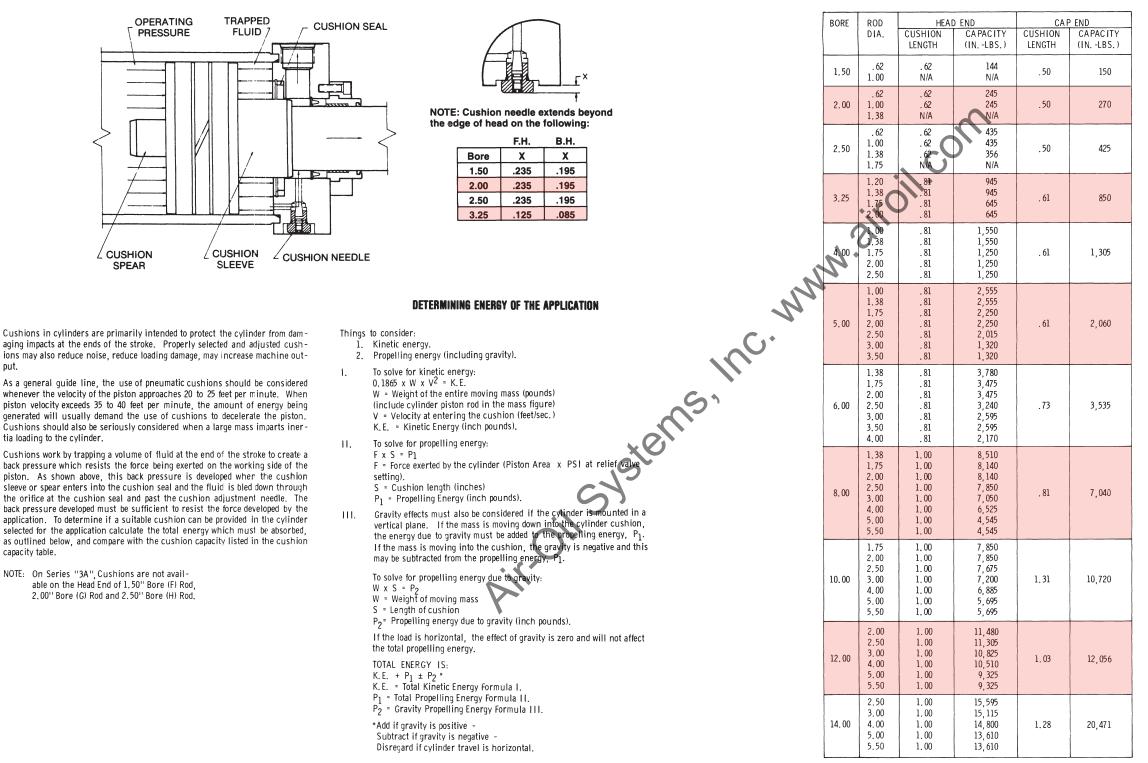

From the description, the cylinder falls into Fig. 8. To determine the value of "L":

ADD:	MP1 V-6 Two times str	''XC'' Dimension ''CE'' Dimension oke (2 x 27)	7 -3/4'' 5 -1/2'' 54''	
	Total Value o	f ''L''	67 -1/4''	


Looking this up on the chart, you'll find a recommended stop tube length of 4 inches.

The amount of stop tube will increase the stroke-plus dimensions of the cylinder by the same value. Add length of the stop tube to the value of "L" and recheck column strength on stroke limitation chart.

Series 3A and 3AN Pneumatic Cylinders


STOP TUBE CHART

CYLINDER CUSHION

CUSHION CAPACITY CHART

SERIES "3A" CUSHION CAPACITIES

put.

TYPICAL APPLICATION PROBLEM

You have tentatively chosen an "3A" Series cylinder with a 3-1/4" bore to move a 50 pound mass horizontally at 3 feet per second. The system relief valve setting is 80 psi. The cylinder is equipped with the standard 1.00" diameter piston rod and the effective cushion stroke or length is . 81 inch.

> Kinetic Energy: 0.1865 x 50 lbs. x (3)² 9.32 x 9 = 84 in. lbs. Propelling Energy: 8.29 x 80 x .81 = 537 Total Application Energy: 84 + 537 = 621 in. lbs.

The total energy seen by the cushion in this application is 621 inch pounds. By referring to the cushion capacity chart shown above, we find the standard 3-1/4" bore "3A" Series cushion can adequately handle the energy. If the energy developed exceeds the capacity of the standard cushion consider use of supercushions or changes in the pneumatic circuit which will reduce the amount of energy the cushions must absorb. (Supercushions have the same physical appearance as the standard cushion described above, except that the effective cushion length is doubled. An additional head or cap on both are added to accommodate the longer cushion sleeve or spear. The overall length of the cylinder body changes accordingly. Capacities of supercushions are double those shown in the cushion capacity chart.)

If in doubt about selecting a cushion, consult the factory with detailed application information and a recommendation will be made

Caution: Cushion adjustment needles require only about one to one and onehalf turn adjustment. Do not unscrew beyond the point at which the head of the screw is flushed with the surface of the head or cap.

INSTALLATION, OPERATION AND MAINTENANCE DATA

SEAL KITS

STORAGE:

If cylinders are to be stored before use, make sure the piston rod is fully retracted. Any portion of the rod that is exposed should be coated with a lubricant. Cylinders in storage should always be fully protected against the elements or other adverse conditions.

INSTALLATION:

The pipe ports of cylinders are sealed with plastic plugs. The plugs protect the precision internal parts by sealing out damaging dirt and grit. Do not remove port plugs until ready to connect piping. To protect cylinders, clean all pipes and pipe fittings of dirt, scale, and thread chips. A filter is recommended to keep operating air free of foreign matter.

Accurate mounting and alignment are essential to proper cylinder performance. By eliminating side loading, packing and bearing life will be extended. Mounting surfaces should be straight; bearings for pin and trunnion mounting must be in line.

OPERATION:

Needle valves in cylinder head and cap of adjustable cushioned cylinders permit regulation of cushioning effect. Adjust needle valve using an Allen wrench, rotating clockwise to increase cushioning, and counter-clockwise to decrease cushioning effect. Speed control valves are essential for obtaining the best cushioning operation. A proper balance of cushion needle and flow control valve adjustment should result in a smooth stop with no bouncing.

MAINTENANCE:

Parts which may need replacement in the course of normal use are the rod wiper, rod seal and piston seals.

The need for replacement of rod seal will become evident through the escaping of air around the gland.

To replace rod wiper or rod seal, remove the gland from the cylinder. Remove worn rod wiper and rod seal. To reassemble, slip new rod wiper and rod seal into grooves. Care should be exercised not to nick the lips of the seals. Be sure to retorque gland screws to the specified torque for the cylinder. (See torque chart).

To replace **Series 3A** piston seals, cut the old seals and remove them. Carefully work the new U-cup seals into the grooves. Care should be exercised not to nick the lips of the seals.

To replace **Series 3AN** piston seals, cut the old piston seal, and remove it and the old O-ring from the groove. Install new O-ring. Next, slightly stretch the Teflon piston seal and work it into the groove. Replace wear strip. Carefully insert the ram assembly into the tube. This will assure the Teflon seal is reshaped equally.

It is recommended that new O-rings be installed each time the cylinder is disassembled for maintenance. This applies to tube and gland O-rings. The cushion needle valve O-rings should also be replaced if these parts are disassembled. When reassembling, be sure to apply proper tie rod torque. (See torque chart).

If the cushion action of the cylinder fails, check the cushion float sealing. Check to determine if the bronze ring has been worn on its internal diameter, and if foreign particles have become lodged between the face of the ring and the cylinder head recess face. A free play of the ring, both radially and axially, is normal to allow for centering and cushion float action.

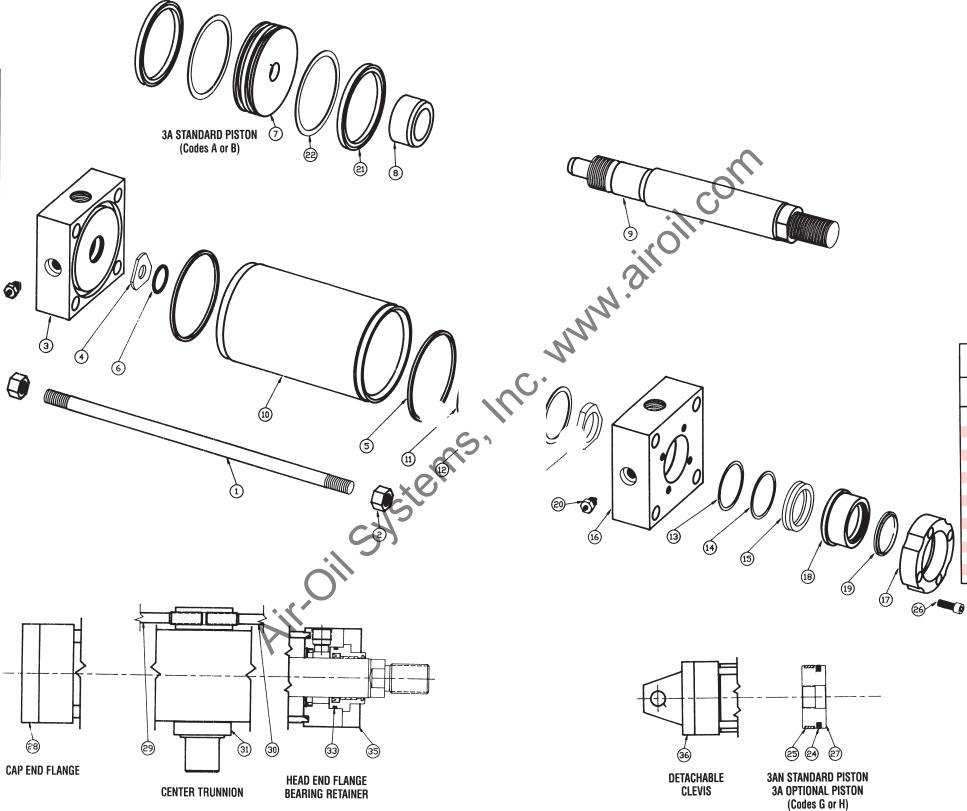
If the cylinder fails to perform the job for which it is ordered, check the following items: 1. That the correct cylinder diameter has been chosen to do the job required. 2. That there is adequate line pressure at the cylinder, under both static and dynamic conditions. 3. That the piston rod is aligned correctly with the load it is pushing or pulling. 4. That the piston packings or the piston rod packings are not worn, allowing pressure to escape.

Replacement parts can be furnished quickly if you will indicate the serial number of the cylinder as shown on the nameplate, and the part name and number, as shown on the drawing. The cylinder illustrated is for reference purposes only, and does not represent any particular model. All cylinders are fully field identifiable, including packing option codes.

Order by Piston Rod Packing Code, Rod Diameter Cod and Cylinder Series Code from nameplate as outlined.

1 (STANDARD) Temperature Range -20° F to +200° F Buna-N O-Rings, Polyurethane Rod Packing and Polyurethane Rod Wiper.*

- 2 (OPTIONAL) Temperature Range -20° F to +200° F Buna-N O-Rings, Buna-N Multiple Lip Rod Packing, Polyurethane Rod Wiper.*
- 3 (OPTIONAL)
 Temperature Range -20° F to +400° F
 Viton O-Rings, Viton Rod Packing, Teflon Rod Wiper


*Teflon Rod Wiper recommended for Series 3AN.

COE	DE EXAMPLE
	Rod Diameter Code
00"-FSM1#	l de la constante de
]	
	PISTON PACKING KITS
	Ordering Example:
	SEAL KIT A-2.00 FOR SERIES 3A
n es e	From piston —— Bore size From packing code Series code
le,	Order by Piston Packing Code, Bore Size and Cylinder Series Code from nameplate as outlined.
	A (3A STANDARD) Temperature Range -20° F to +200° F Buna-N U-Cups, Teflon Back-Up Washers, Buna-N Tube Seals.
E	 (3A OPTIONAL) Temperature Range -20° F to +400° F Viton U-Cups, Teflon Back-Up Washers, Viton Tube Seals.
C	G (3AN STANDARD, 3A OPTIONAL) Temperature Range -20° F to +200° F Piston Wear Strip(s), Filled Teflon Seal w/Buna-N Expander, Buna-N Tube Seals.
۰ ۲	I (3A, 3AN OPTIONAL) Temperature Range -20° F to +400° F Piston Wear Strip(s), Filled Teflon Seal w/Viton Expander, Viton Tube Seals.

When ordering replacement parts, identify Model Number, Serial Number and Part Number, as shown below.

PART NO.	NO. REQ'D.	DESCRIPTION			
1	**	Tie Rod	1		
2	**	Tie Rod Nut	1		
3	1	Сар	1		
4	1	Cap Cushion Float	1		
5	2	O-Ring (Tube)	1		
6	1	Cap Retaining Ring			
7	1	3A Standard Piston	1		
8	1	Cushion Sleeve			
9	1	Piston Rod	1		
10	1	Tube			
11	1	Head Cushion Retaining Ring	5		
12	1	Head Cushion Float			
13	1	Packing Retaining Ring			
14	1	Rod Washer			
15	1	Rod Packing] _		
16	1	Front Head			
17	1	Retainer Plate			
18	1	Gland Assembly			
19	1	Rod Wiper			
20	2	Cushion Needle			
21	2	Piston U-Cup			
22	2	Back-Up (1.50–4.00" Bores)			
24	1	Filled Teflon Seal with Buna Expander			
25	1	Wear Strip	1		
26	4/8	Gland Screw	1		
27	1	3AN Standard Piston	1		
28	1	Cap End Flange			
29	**	Cap End Tie Rod			
30	**	Head End Tie Rod			
31	1	Center Trunnion Band			
33	1	O-Ring (Gland)] +		
35	1	Front Flange			
36	1	Detachable Clevis]		
* As re	quired		- 1		
			CAP		

Series 3A and 3AN Pneumatic Cylinders

FASTENER TORQUES

3A & 3AN SERIES TIE ROD TORQUE							
BORE	TORQUE	TORQUE MX1, 2, 3, 4					
1.5	.25-28	8 ft-lbs.	8 ft-lbs.				
2.0	.31-24	14	14				
2.5	.31-24	14	14				
3.25	.38-24	25	28				
4.00	.38-24	25	28				
5.00	.50-20	35	48				
6.00	.50-20	35	48				
8.00	.62-18	85	115				
10.00	.75-16	130	170				
12.00	.75-16	130	170				
14.00	.875-14	230	375				

3A & 3AN SERIES Gland Screw Torques							
BORE ROD SCREW SIZE TORQ							
1.5	ALL	_	_				
2.0	ALL	#10-32	4 ft-lbs.				
2.5	ALL	#10-32	4				
3.25	ALL	#10-32	4				
4.00	ALL	#10-32	4				
5.00	ALL	#10-32	4				
6.00	ALL	.25-28	10				
8.00	GHJ	.25-28	10				
8.00	KLNRS	.38-24	42				
10.00	HJ	.25-28	10				
10.00	KLNRS	.38-24	42				
12.00	J	.25-28	10				
12.00	KLNRS	.38-24	42				
14.00	ALL	.38-24	42				

CYLINDER WEIGHTS

	3A & 3AN SERIES	
CYLINDER Bore	BASE WEIGHT At Zero Stroke	WEIGHT PER INCH OF STROKE
1.50	5 lbs.	.4 lbs.
2.00	6.5	.5
2.50	10	.6
3.25	20	.9
4.00	27	1.0
5.00	40	1.2
6.00	68	1.6
8.00	102	2.0
10.00	198	2.5
12.00	297	4.0
14.00	486	4.8

OPTIONS

Hanna offers a wide variety of modifications and options to our Standard 3A and 3AN Product Lines. Please contact your authorized Distributor for more information.

SERIES 3A & 3AN

Stroke Adjustable Cylinders Metallic Rod Scrapers Super Cushions Spring Return Cushions Stainless Steel Piston Rods Epoxy Painting Full Face Rod Boots Heavy Chrome Plated Piston Rods Intermediate Center Supports Tightened Stroke Tolerance

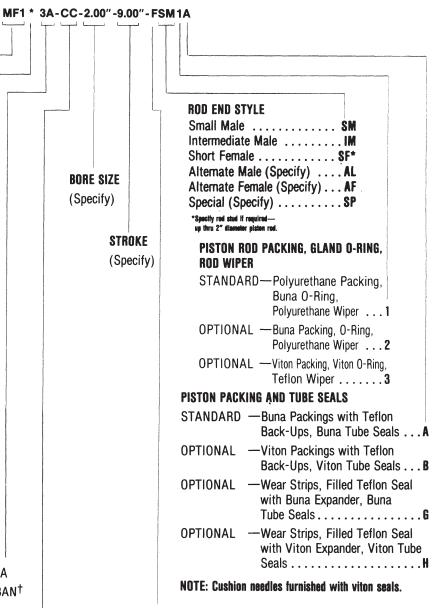
Contact factory for other special options.

Retainer Plates	MOUNTING STYLE
MP3 Mount	Side Lugs MS2
MS1 Mount Self Aligning Rode End Couplings	Centerline LugsMS3
Tandem Mounted Cylinders	Side Tapped MS4
	Head Square Flange MF5
otions.	Cap Square FlangeMF6
	Head Trunnion
	Cap Trunnion MT2
	Intermediate Fixed TrunnionMT4
	Head Rectangular Flange MF1
	Cap Rectangular FlangeMF2
	Head Square ME3
	Cap Square ME4
	Manual Flamma
1	Cap Flange ME6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Tie-Rods MX0,MX1,MX2,
1.	MX3,MX4
C.+	Side End Lugs MS7
	Cap Fixed Clevis MP1
	Cap Detatchable Clevis MP2
	Spherical Bearing MPU3
	Double Rod (Available in most
Air oil systems	mounting styles) MX0-D
XO	Double Rod EndD
	(Specify only if required)
5	SERIES
	Pneumatic 3/
$\bigcirc$	Non-Lube 3
11 and 11	CUSHION
V [*]	Non-Cushion
•	Cushion, Both Ends*
	Cushion, Cap End Only
	· · · · · · · · · · · · · · · · · · ·

#### SERIES

Pneumatic ... 3A Non-Lube ... 3AN[†]

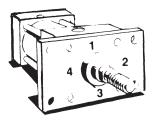
#### CUSHION


Non-Cushion	•	•				.	NC
Cushion, Both Ends*	•	•		•	•	.	CC
Cushion, Cap End Only	•	•		•	•	.	CB
Cushion, Head End Only*	je .	•		•		. (	CR

*Cushion on Head End of 1.50" Bore (F) Rod, 2.00" Bore (G) Rod and 2.50" Bore (H) Rod are not available.

When ordering a stop tube, specify actual (working) stroke and nominal stroke. State length of stop tube.

[†]Must be ordered with G or H piston code.


# **HOW TO ORDER**



#### **ROD DIAMETER**

(Specify Piston Rod Code from dimensional chart)

- CC CB



Port location: if other than position 1, must be specified. Mounting accessories must be specified if required.



Series MT Mill-Type Hydraulic Cylinders ■ High-Tech Duralon[®] Rod Bearing ■ State-of-the-Art Rod and Piston Sealing System Heavy-Duty Piston-to-Rod Connection ■ 2,000 PSI Pressure Ratings ■ 2.00" – 16.00" Standard Bore Sizes ■ 7 Mounting Styles

Series MT Mill-Type Hydraulic Cylinders

# SERIES MT MILL-TYPE CYLINDERS



Series MT

### CONTENTS

SERIES MT FEATURES	Page 184
HOW TO ORDER	219
MOUNTING STYLES	
MP1 Fixed Double Ear Clevis MountMP3 Fixed Single Ear Clevis MountMPU3 Spherical Bearing MountMT4 Intermediate Fixed Trunnion MountME5 Head Flange MountME6 Cap Flange MountMS7 End Lugs Mount	
TECHNICAL INFORMATION	
Port Location and Size Hydraulic Force Data Stroke Limitation Data Stop Tube Data	204 205 206 207
MOUNTING ACCESSORIES	208
ELECTRONIC & ELECTRICAL CONTROLS Proximity Switches Electronic Feedback Device	
INSTALLATION, OPERATION AND MAINTENANCE INFORMATION	
Fastener Torques Seal Kits Cylinder Weights Parts List	215
OTHER ACCESSORIES	
Rod Boots	



### Series MT Mill-Type Extra-Heavy-Duty Hydraulic Cylinders

Hanna's Series MT Mill-Type Hydraulic Cylinders are designed and built for heavy-duty industrial applications that demand high performance, precision tolerances and extra ruggedness.

Designed for specifying engineers, this catalog presents full details about the Series MT's latest technology design features, complete dimensional drawings, technical application information, options and accessories, plus installation, operation and maintenance data. Clear and concise ordering information facilitates proper cylinder selection for specific applications and operating conditions.

#### **Cylinder Design and Construction**

The Series MT product line has been truly valueengineered from the ground up. During the design stage, each and every cylinder component was thoroughly analyzed and tested. Individual component design and material selection were evaluated on the basis of performance, longevity, fatigue resistance, ease of servicing, and cost.

Proven technologies were applied in critical areas such as seals and bearings. For instance, Hanna's unique, non-metallic Duralon rod bearing, and our glass-filled Teflon, O-ring energized piston seal with bronze-filled bearing strips, combine to eliminate metal-to-metal contact at bearing surfaces. This assures extremely low friction and long service life. In addition, it makes Series MT cylinders the most suitable units available for high pressure applications requiring ruggedness, precision, zero leakage and day-in, day-out performance.

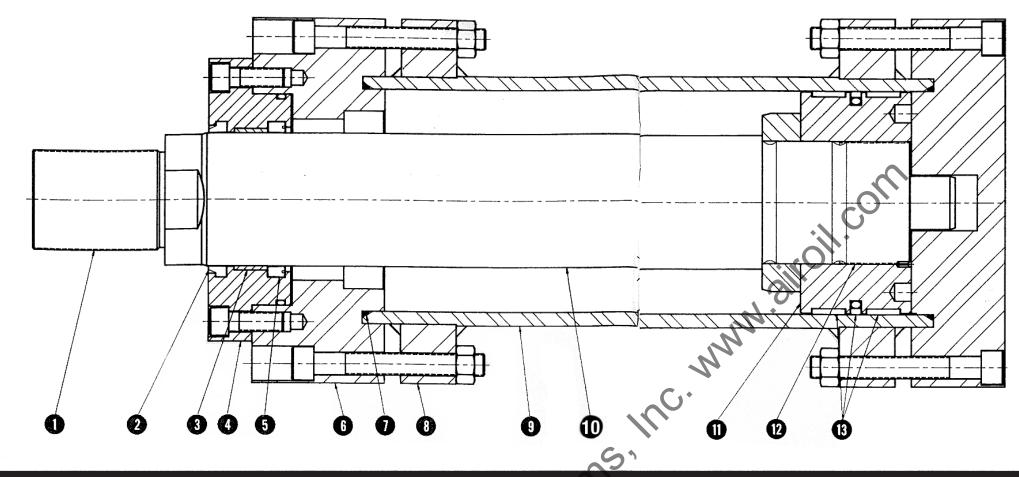
#### Design Flexibility

Series MT cylinders offer maximum flexibility for machine design. They are available in seven standard mounting styles, and 12 standard bore sizes from 2.00" through 16.00". 14 standard rod sizes from 1.00" through 8.00" are also offered, with a minimum of two to a maximum of six rod sizes for each bore size.

This wide selection of standard rod and bore diameters means you can more accurately and economically size the cylinder to meet specific application requirements. Optional piston and rod seal materials and configurations also are available to further increase your design flexibility.

In addition, Hanna offers a wide range of options and accessories to enhance the performance of MT cylinders. Included are proximity switches and for the ultimate in precision control, our Closed Loop Electronic Feedback device.

#### Custom Capabilities


If your needs cannot be met by the standard units presented in this catalog, be assured that Hanna has significant "Beyond-the-Catalog" capabilities. We can custom-design and manufacture MT cylinders to meet virtually any requirement—including greater pressures, larger bore sizes through 30", larger rod sizes, custom mountings and special seals for specific applications. In addition, metric cylinders can be designed and manufactured to meet customer requirements. If you involve us during the design phase of your project, you'll find our problem-solving orientation can provide creative, cost-effective solutions to the most difficult cylinder application problems.

#### The Company Behind the Cylinders

For more than 85 years, Hanna Corporation has earned its reputation as a major manufacturer of premium quality, industrial grade cylinders. With our Series MT, our Series RT Rotating cylinders, our heavy-duty N.F.P.A. tie-rod type air and hydraulic cylinders, plus custom-welded cylinders manufactured by our T.J. Brooks Division, **Hanna** offers a single source for virtually any heavy-duty cylinder requirement. Add to this the responsive sales and service support from the factory and from our highly qualified distributor organization, and you are assured of getting the right cylinder for your application—on time and at a competitive price. Series MT



Series MT



### **Series MT Features**

#### 1. Piston Rod End

Integral thread construction, precision-machined for close concentricity. Studded rod ends and metric threads are available.

#### 2. Rod Wiper

The first line of defense in preventing ingestion of dust, dirt or other contaminants into the cylinder. The snap-in wiper that comes standard on Series MT cylinders is made of extremely durable polyurethane. A heavy wiper lip ensures that contact is always maintained with the surface of the rod to effectively remove dirt, mud, etc. The outside diameter has a sealed outer lip to prevent moisture from entering the groove. Molded ribs on the inside diameter add stability and prevent pressure traps. Metallic rod wiper is optionally available.

#### 3. Duralon Rod Bearing

Hanna's high-tech Duralon Rod Bearing is designed to perform under poorly lubricated, high-load conditions. The exact combination of woven Teflon and Dacron, plus the fiberglass structural shell, increases load-carrying capabilities and eliminates "cold-flow" associated with Teflon. Duralon bearings are capable of sustaining much higher compressive loads than other materials commonly used for bearings, have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

#### 4. Rod Bearing Cartridge

One-piece, machined ductile iron with integral flange Precision piloted and held to extremely close concentricity to cylinder bore. Flange has two tapped holes to facilitate easy removal for rod packing replacement.

#### 5. Polyurethane Rod Seal

Series MT cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance. Viton Poly-Pak U-cup is available for use with non-petroleum based fluids or for higher temperature service. Multiple-lip Buna rod seal is also available.

#### 6. Steel Heads

High strength steel heads are precision machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

#### 7. Tube Seal

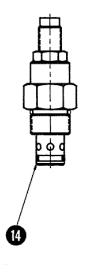
Tube ends are piloted to end caps and fitted with Buna-N O-ring seals. Viton seals are available for use with nonpetroleum based fluids, or for higher temperature service.

#### 8. Welded Retaining Flanges

Precision machined and permanently welded for extra ruggedness. End caps are retained to flanges with highalloy, heat-treated through bolts, counter-bored into the caps, and torqued to flanges with SAE Grade 8 lock nuts. Bolts provide minimum yield strength of 150,000 p.s.i.

#### 9. Heavy Wall Tubing

Heavy wall tubing is precision honed or skived, and then polished to 16 to 20 Rms. This process provides excellent corrosion resistance and an ideal surface to seal against. The result is enhanced piston seal longevity.


#### **10. Piston Rod**

Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failure. The rods provide 100,000 p.s.i. minimum yield strength in diameters up to 3.50"; 59,000 p.s.i. average yield strength in 4.00" diameters and above. All sizes are hard chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish.

#### 11. Piston

Series MT

One-piece piston of high impact-resistant ductile iron threaded to piston rod, and furnished with breakaway spirals on each side. Bronze piston with U-cup seals is available as an extra-cost option.



#### 12. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned. This procedure virtually eliminates the possibility of the piston backing off the piston rod.

#### 13. Piston Sealing System

Hanna's glass-filled Teflon, O-ring energized piston seal provides a positive seal without problems such as rollover or extrusion that are associated with U-cup type seals. Glass-filled Nylon wear rings provide non-metallic bearing points on the piston, assuring long life and extremely low friction, while increasing bearing load characteristics.

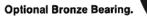
#### 14. Cushion Adjustment Cartridge

Available as an option on 4.00" bore sizes and above. Ball check and flow control needle adjustment are incorporated into a single cartridge. The needle is always restrained under full adjustment, and provides a wide range of cushion adjustments with minimal restrictions on return stroke.

### **High-Tech Duralon Rod Bearing**

#### The high-tech Duralon rod bearing is supplied as standard on all Hanna Series MT Mill-Type Cylinders. A traditional bronze bearing is also available as an option.

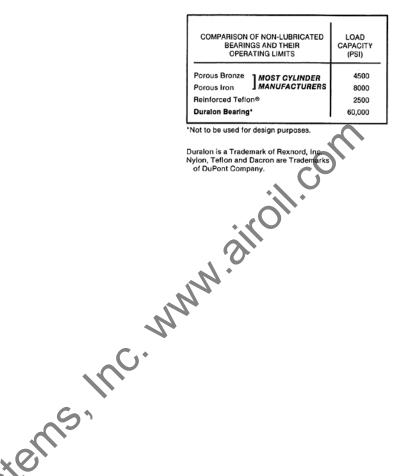
Hanna strongly recommends the Duralon bearing, which has proven to be superior to all other bearing materials in countless cylinder applications. Here's why:


The useful life of any hydraulic cylinder is determined by the performance of the piston rod bearing. It is responsible for true alignment of the piston rod to the cylinder bore, and must carry the forces generated by both external and internally-generated eccentric loads.

Traditional bronze or cast iron bearings require constant lubrication to help minimize friction and resultant wear. Once the cylinder rod bearings begin to wear, the piston moves off true center of the cylinder bore, thus shortening cylinder life. Additionally, the wear pattern accelerates, causing deterioration in the piston rod wiper, letting contaminants into the cylinder and in the piston rod seal, thereby causing fluid leakage.

Hanna Corporation has solved this critical design problem with the unique, non-metallic Duralon bearing. An exact combination of woven Teflon® and Dacron® fibers bonded to a fiberglass shell, Duralon bearings are capable of sustaining much higher compressive loads than either bronze or cast iron. In addition, Duralon bearings have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

As a result, cylinders with Duralon bearings are ideal for use in heavy-duty applications, and servo systems requiring minimal actuator friction. Because of the low coefficient of friction, very little heat gen-






eration occurs, thereby prolonging both bearing and seal life.

Duralon bearings are compatible with most known fluids, including water, water glycols, standard petroleum-based fluids, phosphate esters and water/ oil, oil/water fluids. They can operate in environments ranging from -65° F to +325° F.

#### **DURALON VS. COMPETITIVE BEARING MATERIALS**



ď 1000

à

The low friction characteristic of the Duralon bearing is due to the Teflon fabric liner. Increased loading, at constant speed, results in a marked decrease in the coefficient of friction.

#### FRICTIONAL PROPERTIES



COMPARISON OF FRICTION PROPERTIES OF JOURNAL BEARING MATERIALS									
	COEFFICIENT	SLIP STICK							
Steel-on-Steel	50	Yes							
Bronze-on-Steel	35	Yes							
Aluminum									
Bronze-on-Steel	45	Yes							
Sintered Bronze-on-									
Steel (Mineral Oil)	13	No							
Bronze-on-Steel									
(Mineral Oil)	16	No							
Copper Film Deposited									
on Steel		Yes							
Teflon®-on-Steel		No							
Duralon®-on-Steel	.0516	No							

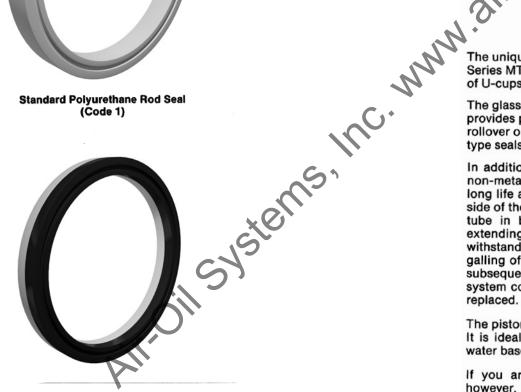
### Extra-Rugged Polyurethane Rod Seal

#### POLYURETHANE ROD SEAL **ADVANTAGES**

- Extremely high durometer (90)
- Extra-wide cross section
- Broad temperature range
- Compatible with most fluids
- Line contact minimizes friction

Series MT cylinders incorporate the industry's heaviest cross-section polyurethane U-cup piston rod seal. As a seal material, polyurethane is acknowledged to be the toughest, most abrasion-resistant compound available.

The abrasion and wear resistance thus associated with polyurethane, along with the pressure and wear compensating U-cup design, produces a seal that's unmatched for long life and zero-leakage performance.


A second lip further enhances seal life by acting as a wiper to prevent dirt and other contaminants from reaching the primary lip. The second lip also serves as a back-up to the primary lip.

In addition, the heavy cross-section of the polyurethane material produces a seal with outstanding stability in high pressure applications. This stability prevents extrusion and rollover common with small cross section designs.

Furthermore, recent advances in polymer technology have expanded the compatibility of polyurethane seals with most water additive fluids. Viton Poly-Pak seal option is available as well.



**Standard Polyurethane Rod Seal** (Code 1)



**Optional Poly-Pak Viton U-Cup Seal** (Code 3)

## State-of-the-Art Piston Sealing System

#### STANDARD PISTON SEAL **ADVANTAGES**

- Positive Sealing
- · No rollover or extrusion
- Extremely low friction
- · Long service life

The unique, standard piston sealing system on Series MT cylinders combines the sealing capability of U-cups with the longevity of cast iron rings.

The glass-filled Teflon, O-ring energized seal provides positive sealing without problems such as rollover or extrusion that are associated with U-cup type seals.

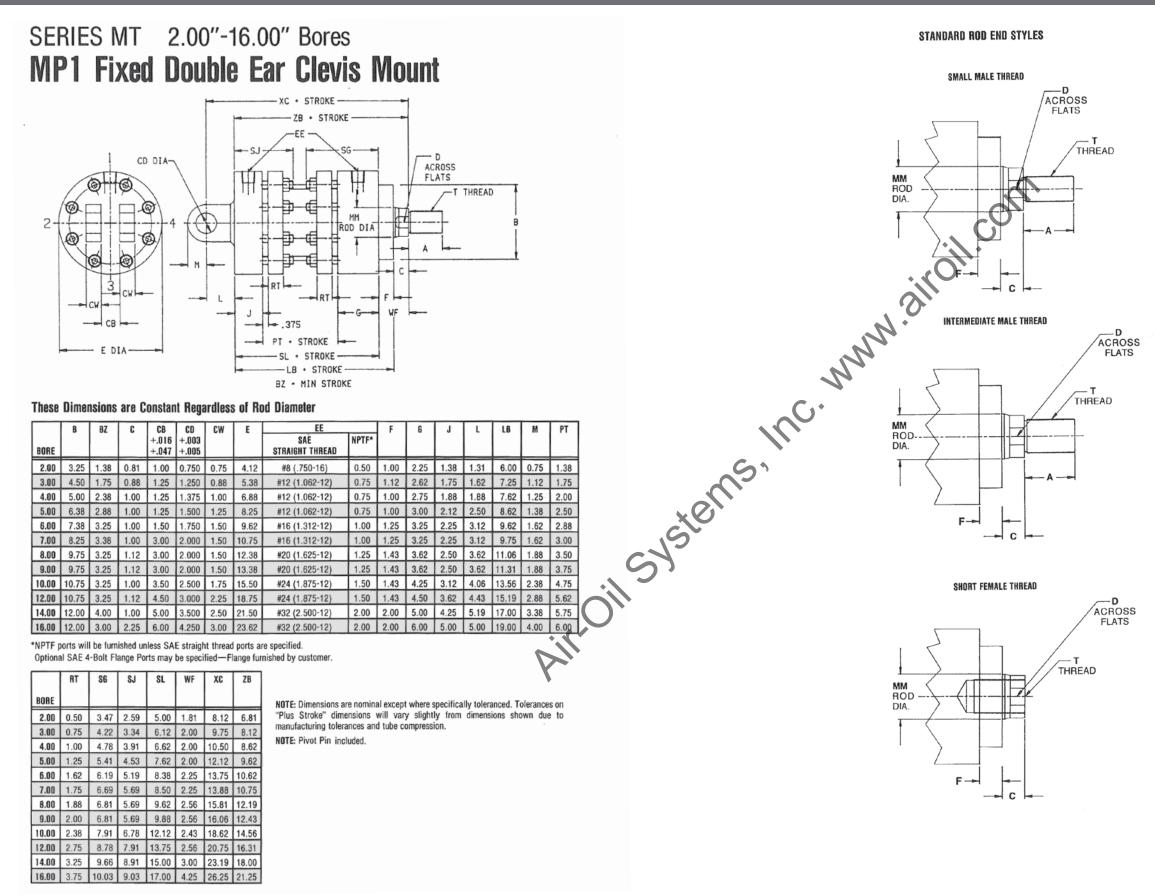
In addition, two bronze-filled bearing strips provide non-metallic bearing points on the piston, assuring long life and extremely low friction. Located on each side of the seal, the wear strips also wipe the cylinder tube in both directions of piston travel, further extending seal life. These wear strips are capable of withstanding high side loads, and thus prevent galling of the tube, catastrophic cylinder failure, and subsequent damage to valves and other hydraulic system components. They virtually never need to be replaced.

The piston seal has no slip stick and minimal friction. It is ideal for servo-type conditions as well as high water based service.

If you are using a zero-leak check valve circuit. however, it may require the use of optional zero-drift U-cup seals to maintain absolute position. The miniscule by-pass with our standard seal may result in some very minor drift. Both Poly-Pak and Viton U-cups seals are available.



Standard glass-filled Teflon, O-ring energized piston seal with two bronze-filled bearing stripsinstalled on a ductile iron piston. (Code G)



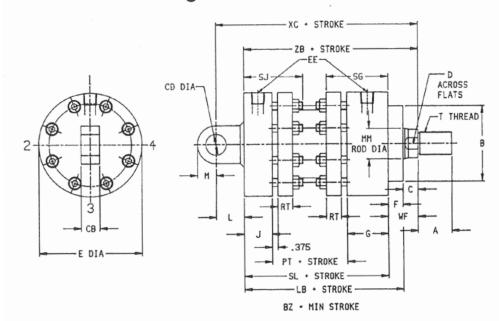



Optional bronze piston with two Poly-Pak U-cup seals. Viton U-cup seals also available. (Code A)



Optional Poly-Pak U-cup seals (2) with one bronzefilled bearing strip-installed on a ductile iron piston. Viton U-cup seals also available (Code B)




### Series MT

MP1

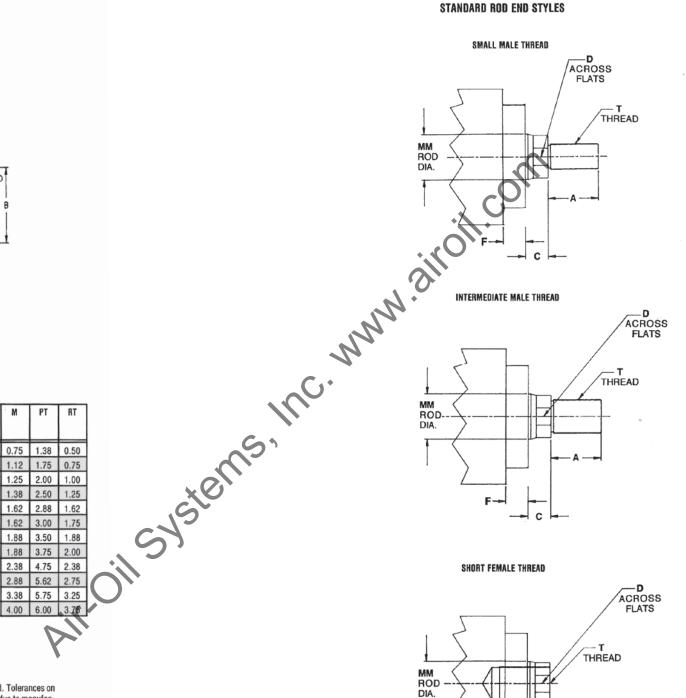
DIIIICII	310113	ale Ai	COLCU	uy tilo	nuu pia	MIGLGI H	A 93 9
C	YLINDER					T (THREAD)	
BORE	ROD DIA. Code	MM Rod DIA.	A	D	SM SMALL MALE	IM INTER- Mediate Male	SF Short Female
2.00	F G	1.00 1.38	1.12 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12
5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12
7.00	K L M P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12
8.00	L M P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12
9.00	M N R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12
10.00	M P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 —
12.00	N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62 —	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12	3.00-12 3.25-12 3.50-12 4.00-12
14.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12  
16.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 — —	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 —

#### Dimensions are Affected by the Rod Diameter

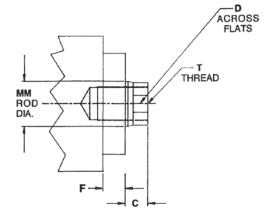
## SERIES MT 2.00"-16.00" Bores **MP3 Fixed Single Ear Clevis Mount**



These Dimensions are Constant Regardless of Rod Diameter


	8	BZ	C	CB	CD	E	EE 🐭		F	6	J	L	LB	M	PT	RT
BORE				±.005	+.003 +.005		SAE Straight Thread	NPTF*								
2.00	3.25	1.38	0.81	1.00	0.750	4.12	#8 (.750-16)	0.50	1.00	2.25	1.38	1.31	6.00	0.75	1.38	0.50
3.00	4.50	1.75	0.88	1.25	1.250	5.38	#12 (1.062-12)	0.75	1.12	2.62	1.75	1.62	7.25	1.12	1.75	0.75
4.00	5.00	2.38	1.00	1.25	1.375	6.88	#12 (1.062-12)	0.75	1.00	2.75	1.88	1.88	7.62	1.25	2.00	1.00
5.00	6.38	2.88	1.00	1.25	1.500	8.25	#12 (1.062-12)	0.75	1.00	3.00	2.12	2.50	8.62	1.38	2.50	1.25
6.00	7.38	3.25	1.00	1.50	1.750	9.62	#16 (1.312-12)	1.00	1.25	3.25	2.25	3.12	9.62	1.62	2.88	1.62
7.00	8.25	3.38	1.00	3.00	2.000	10.75	#16 (1.312-12)	1.00	1.25	3.25	2.25	3.12	9.75	1.62	3.00	1.75
8.00	9.75	3.25	1.12	3.00	2.000	12.38	#20 (1.625-12)	1.25	1.43	3.62	2.50	3.62	11.06	1.88	3.50	1.88
9.00	9.75	3.25	1.12	3.00	2.000	13.38	#20 (1.625-12)	1.25	1.43	3.62	2.50	3.62	11.31	1.88	3.75	2.00
10.00	10.75	3.25	1.00	3.50	2.500	15.50	#24 (1.875-12)	1.50	1.43	4.25	3.12	4.06	13.56	2.38	4.75	2.38
12.00	10.75	3.25	1.12	4.50	3.000	18.75	#24 (1.875-12)	1.50	1.43	4.50	3.62	4.43	15.19	2.88	5.62	2.75
14.00	12.00	4.00	1.00	5.00	3.500	21.50	#32 (2.500-12)	2.00	2.00	5.00	4.25	5.19	17.00	3.38	5.75	3.25
16.00	12.00	3.00	2.25	6.00	4.250	23.62	#32 (2.500-12)	2.00	2.00	6.00	5.00	5.00	19.00	4.00	6.00	3.75

*NPTF ports will be furnished unless SAE straight thread ports are specified. Optional SAE 4-Bolt Flange Ports may be specified-Flange furnished by customer.


	SG	SJ	SL	WF	XC	ZB
BORE						
2.00	3.47	2.59	5.00	1.81	8.12	6.81
3.00	4.22	3.34	6.12	2.00	9.75	8.12
4.00	4.78	3.91	6.62	2.00	10.50	8.62
5.00	5.41	4.53	7.62	2.00	12.12	9.62
6.00	6.19	5.19	8.38	2.25	13.75	10.62
7.00	6.69	5.69	8.50	2.25	13.88	10.75
8.00	6.81	5.69	9.62	2.56	15.81	12.19
9.00	6.81	5.69	9.88	2.56	16.06	12.43
10.00	7.91	6.78	12.12	2.43	18.62	14.56
12.00	8.78	7.91	13.75	2.56	20.75	16.31
14.00	9.66	8.91	15.00	3.00	23.19	18.00
16.00	10.03	9.03	17.00	4.25	26.25	21.25

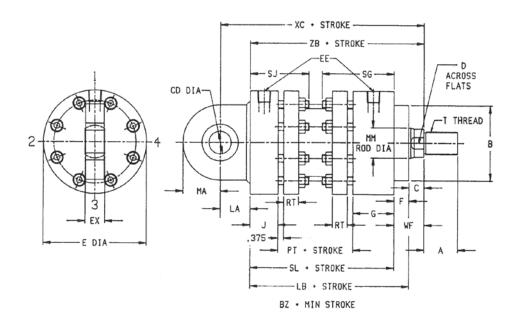
NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NOTE: Pivot Pin not included.



SHORT FEMALE THREAD




### Series MT

	關	8 F	3	
	81/	Colum (Data	யா	
	14	aug Igyd	<b>~</b> ,	n.
r	84	88		<b>U</b>

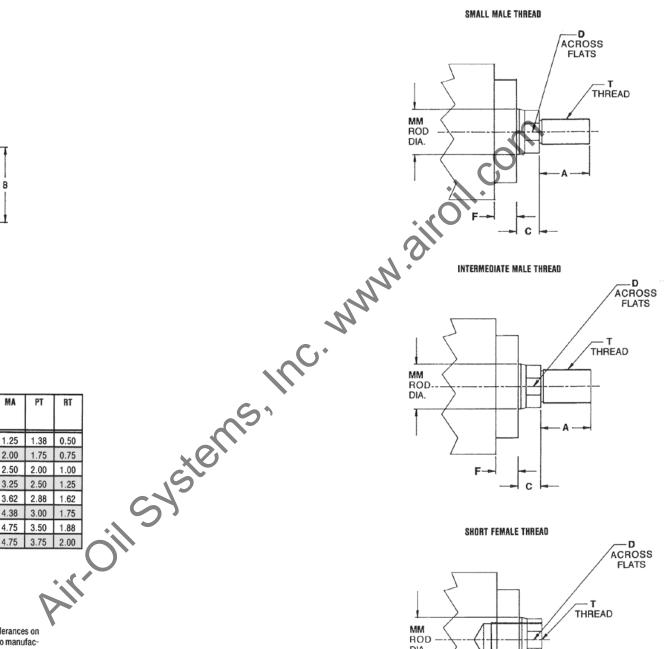
	YLINDER	9				T (THREAD)	
		MM	A	D	SM	IM	SF
BORE	ROD DIA. CODE	ROD DIA.			SMALL Male	INTER- Mediate Male	SHORT Female
2.00	F G	1.00 1.38	1.12 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12
5.00	JKL⊠	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12
7.00	K L N P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12
8.00	L M N P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12
9.00	M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12
10.00	M P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62 	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 —
12.00	N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62 —	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12 —	3.00-12 3.25-12 3.50-12 4.00-12 —
14.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 — —
16.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 —	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 — —

#### Dimensions are Affected by the Rod Diameter

## SERIES MT 2.00"-9.00" Bores **MPU3 Spherical Bearing Mount**

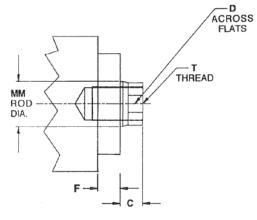


#### These Dimensions are Constant Regardless of Rod Diameter


	B	BZ	C	CD	E	EE		EX	F	6	J	LA	LB	MA	PT	RT
BORE				+.000 001		SAE Straight Thread	NPTF*									
2.00	3.25	1.38	0.81	0.750	4.12	#8 (.750-16)	0.50	0.656	1.00	2.25	1.38	1.25	6.00	1.25	1.38	0.50
3.00	4.50	1.75	0.88	1.250	5.38	#12 (1.062-12)	0.75	1.093	1.12	2.62	1.75	1.75	7.25	2.00	1.75	0.75
4.00	5.00	2.38	1.00	1.500	6.88	#12 (1.062-12)	0.75	1.312	1.00	2.75	1.88	2.00	7.62	2.50	2.00	1.00
5.00	6.38	2.88	1.00	2.000	8.25	#12 (1.062-12)	0.75	1.750	1.00	3.00	2.12	2.50	8.62	3.25	2.50	1.25
6.00	7.38	3.25	1.00	2.250	9.62	#16 (1.312-12)	1.00	1.969	1.25	3.25	2.25	2.75	9.62	3.62	2.88	1.62
7.00	8.25	3.38	1.00	2.750	10.75	#16 (1.312-12)	1.00	2.406	1.25	3.25	2.25	3.00	9.75	4.38	3.00	1.75
8.00	9.75	3.25	1.12	3.000	12.38	#20 (1.625-12)	1.25	2.625	1.43	3.62	2.50	3.25	11.06	4.75	3.50	1.88
9.00	9.75	3.25	1.12	3.000	13.38	#20 (1.625-12)	1.25	2.625	1.43	3.62	2.50	3.25	11.31	4.75	3.75	2.00

*NPTF ports will be furnished unless SAE straight thread ports are specified. Optional SAE 4-Bolt Flange Ports may be specified-Flange furnished by customer.

	<b>S</b> 6	SJ	SL	WF	XC	ZB
BORE						
2.00	3.47	2.59	5.00	1.81	8.06	6.81
3.00	4.22	3.34	6.12	2.00	9.88	8.12
4.00	4.78	3.91	6.62	2.00	10.62	8.62
5.00	5.41	4.53	7.62	2.00	12.12	9.62
6.00	6.19	5.19	8.38	2.25	13.38	10.62
7.00	6.69	5.69	8.50	2.25	13.75	10.75
8.00	6.81	5.69	9.62	2.56	15.43	12.19
9.00	6.81	5.69	9.88	2.56	15.69	12.43

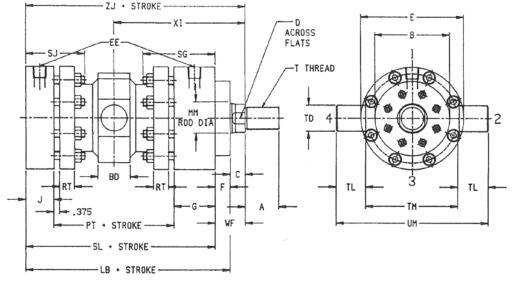

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

NOTE: Spherical Bearing is rated for 2000 P.S.I. Dynamic Load.



STANDARD ROD END STYLES






### Series MT

					T (THREAD)						
q	YLINDER				T (THREAD)						
BORE	ROD DIA. Code	MM Rod Dia.	A	D	SM Small Male	IM Inter- Mediate Male	SF Short Female				
2.00	F G	1.00 1.38	1.12 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14				
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12				
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12				
5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12				
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12				
7.00	K L M P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12				
8.00	L M P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12				
9.00	M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12				

# Dimensions are Affected by the Rod Diameter MPU3

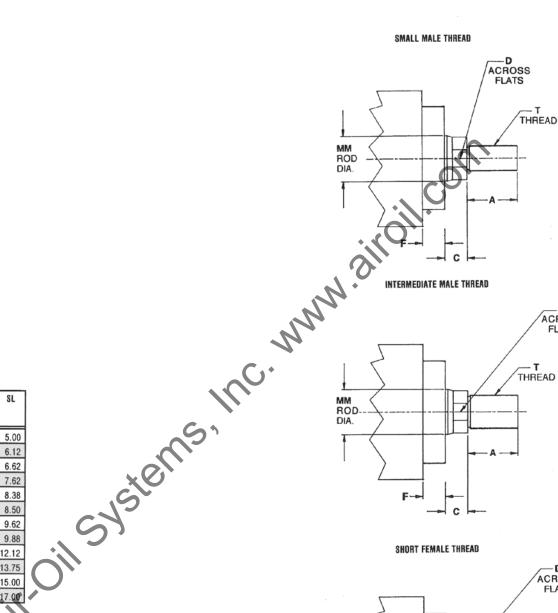
## SERIES MT 2.00"-16.00" Bores **MT4 Intermediate Fixed Trunnion Mount**



BZ • MIN STROKE

#### These Dimensions are Constant Regardless of Rod Diameter

	B	BD	BZ	C	E	EE	*	F	6	J	LB	PT	RT	SG	SJ	SL
BORE						SAE Straight Thread	NPTF*									
2.00	3.25	1.50	1.38	0.81	4.12	#8 (.750-16)	0.50	1.00	2.25	1.38	6.00	1.38	0.50	3.47	2.59	5.00
3.00	4.50	1.62	1.75	0.88	5.38	#12 (1.062-12)	0.75	1.12	2.62	1.75	7.25	1.75	0.75	4.22	3.34	6.12
4.00	5.00	2.12	2.38	1.00	6.88	#12 (1.062-12)	0.75	1.00	2.75	1.88	7.62	2.00	1.00	4.78	3.91	6.62
5.00	6.38	2.38	2.88	1.00	8.25	#12 (1.062-12)	0.75	1.00	3.00	2.12	8.62	2.50	1.25	5.41	4.53	7.62
6.00	7.38	2.38	3.25	1.00	9.62	#16 (1.312-12)	1.00	1.25	3.25	2.25	9.62	2.88	1.62	6.19	5.19	8.38
7.00	8.25	2.38	3.38	1.00	10.75	#16 (1.312-12)	1.00	1.25	3.25	2.25	9.75	3.00	1.75	6.69	5.69	8.50
8.00	9.75	2.88	3.25	1.12	12.38	#20 (1.625-12)	1.25	1.43	3.62	2.50	11.06	3.50	1.88	6.81	5.69	9.62
9.00	9.75	2.88	3.25	1.12	13.38	#20 (1.625-12)	1.25	1.43	3.62	2.50	11.31	3.75	2.00	6.81	5.69	9.88
10.00	10.75	3.38	3.25	1.00	15.50	#24 (1.875-12)	1.50	1.43	4.25	3.12	13.56	4.75	2.38	7.91	6.78	12.12
12.00	10.75	4.88	3.25	1.12	18.75	#24 (1.875-12)	1.50	1.43	4.50	3.62	15.19	5.62	2.75	8.78	7.91	13.75
14.00	12.00	5.50	4.00	1.00	21.50	#32 (2.500-12)	2.00	2.00	5.00	4.25	17.00	5.75	3.25	9.66	8.91	15.00
16.00	12.00	5.50	3.00	2.25	23.62	#32 (2.500-12)	2.00	2.00	6.00	5.00	19.00	6.00	3.75	10.03	9.03	17.00

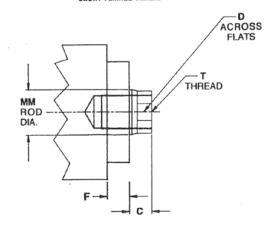

*NPTF ports will be furnished unless SAE straight thread ports are specified. Optional SAE 4-Bolt Flange Ports may be specified-Flange furnished by customer.

BORE	TD +.000 002	TL	TM	UM	WF	XI Min.	ZJ
2.00	1.250	1.25	3.75	6.25	1.81	6.50	6.81
3.00	1.375	1.38	5.12	7.88	2.00	7.00	8.12
4.00	1.750	1.75	6.62	10.12	2.00	8.50	8.62
5.00	2.000	2.00	7.56	11.56	2.00	9.50	9.62
6.00	2.250	2.25	9.12	13.62	2.25	10.25	10.62
7.00	2.250	2.25	10.12	14.62	2.25	11.00	10.75
8.00	2.500	2.50	11.43	16.43	2.56	11.75	12.19
9.00	2.500	2.50	12.43	17.43	2.56	11.75	12.43
10.00	3.000	3.00	16.50	22.50	2.43	13.00	14.56
12.00	3.500	3.50	19.00	26.00	2.56	15.25	16.31
14.00	4.500	4.50	21.50	30.50	3.00	16.75	18.00
16.00	5.000	5.00	23.50	33.50	4.25	18.75	21.25

#### NOTE: Trunnion location (XI) must be specified when ordering.

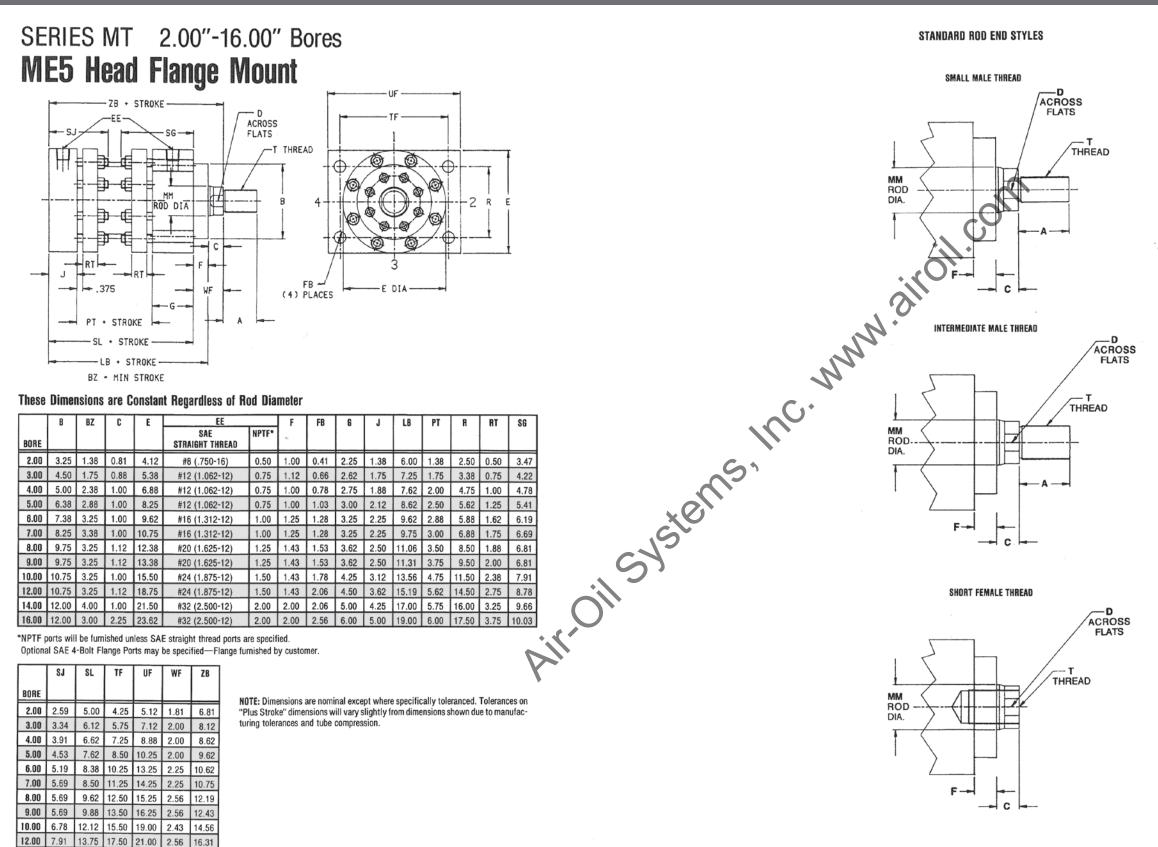
NOTE: Align and mount pillow blocks to avoid bending moments in trunnions.

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression






С


ACROSS FLATS

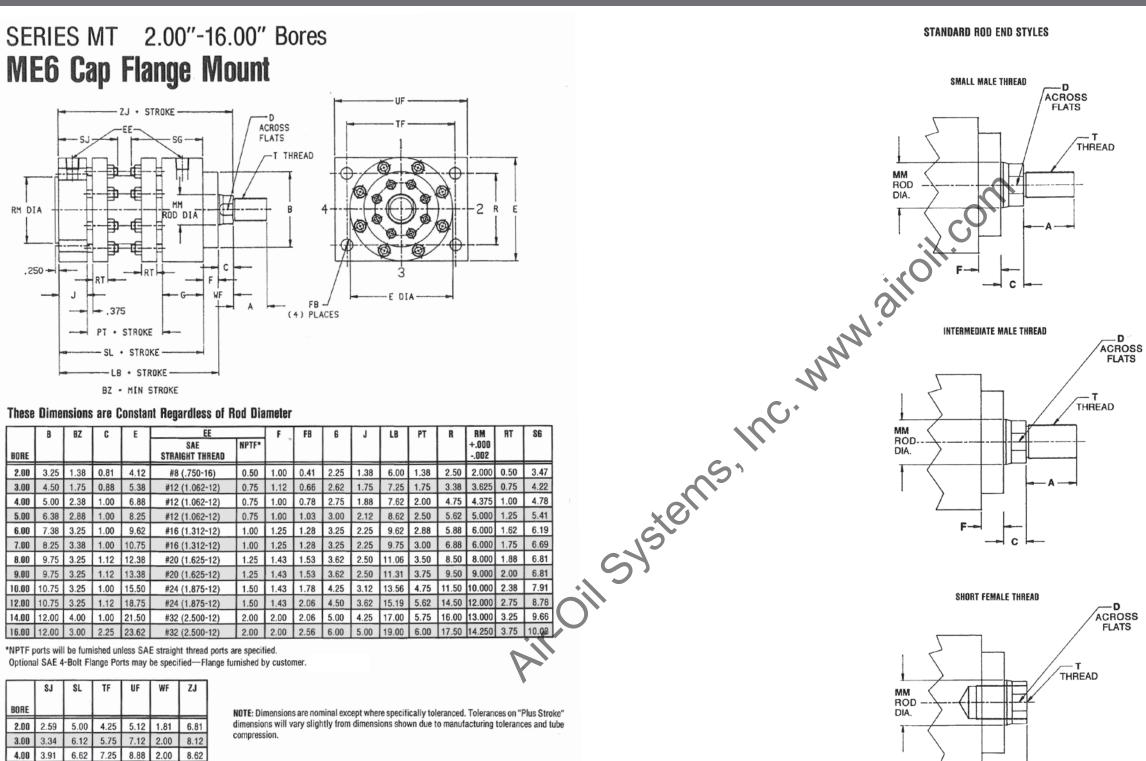
STANDARD ROD END STYLES



### Series MT

ROODIA. CODE FGGHJHJKJKLMN KLMN KLMN P	MM           ROD           DIA.           1.00           1.38           1.75           2.00           2.50           2.00           2.50           3.00           3.50           4.00           2.50           3.00           3.50           4.00           4.50	A 1.12 1.62 2.00 2.25 3.00 2.25 3.00 2.25 3.00 3.50 3.50 3.50 3.50 3.50 3.50 3.5	D 	SM SMALL MALE .75-16 1.00-14 1.25-12 1.50-12 1.50-12 1.88-12 2.25-12 1.88-12 2.25-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.80-12 1.88-12 2.50-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-12 1.80-	IM INTER- MEDIATE MALE .88-14 1.25-12 1.25-12 1.75-12 1.75-12 1.75-12 2.25-12 2.75-12 3.25-12 3.25-12 3.25-12 3.25-12 3.25-12 3.25-12 2.75-12 3.25-12 3.25-12 2.75-12 3.25-12	SF SHORT FEMALE .75-16 1.00-14 1.25-12 1.50-12 1.50-12 1.50-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 3.00-12 1.88-12 2.50-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 3.00-12 1.88-12 3.00-12 1.88-12 3.00-12 1.88-12 3.25-12 3.00-12 3.00-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.50-12 3.5
G G H J H J K J K L M N K L M N P	1.38 1.38 1.75 2.00 2.50 2.50 3.00 3.50 4.00 2.50 3.00 3.50 4.00	1.62 2.00 2.25 3.00 2.25 3.00 2.25 3.00 3.50 3.50 3.50 4.00 3.50 4.00	1.12 1.50 1.69 2.06 2.62 3.00 2.06 2.62 3.00 2.06 2.62 3.00 2.06 2.62 3.30	1.00-14 1.00-14 1.25-12 1.50-12 1.25-12 1.88-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 3.00-12 1.88-12 2.25-12 2.25-12 2.25-12 2.50-12	1.25-12 1.25-12 1.50-12 1.75-12 2.25-12 1.75-12 2.25-12 2.25-12 2.25-12 2.25-12 3.25-12 3.25-12 3.25-12 2.25-12 2.25-12 2.25-12 2.25-12 2.75-12	1.00-14 1.00-14 1.25-12 1.50-12 1.25-12 1.50-12 1.88-12 2.25-12 1.88-12 2.25-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.50-12 1.88-12 2.25-12
H J K J K L M N K L M N P	1.75 2.00 2.50 2.50 3.00 3.50 3.50 4.00 2.50 3.50 4.00	2.00 2.25 3.00 2.25 3.00 3.50 3.50 3.50 3.50 3.50 4.00 3.50 3.50 4.00	1.50 1.69 2.06 2.62 3.00 2.62 3.00 2.62 3.00 3.38 2.06 2.62 3.30	1.25-12 1.50-12 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 3.00-12 1.88-12 2.25-12 2.50-12	1.50-12 1.75-12 1.50-12 1.75-12 2.25-12 1.75-12 2.25-12 3.25-12 2.25-12 2.25-12 3.25-12 3.25-12 3.25-12 2.25-12 2.25-12 2.25-12	1.25-12 1.50-12 1.25-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 3.00-12 1.88-12 2.50-12 3.00-12
JKLM KLMN KLMN P	2.00 2.50 2.50 3.00 3.50 3.50 3.50 4.00 2.50 3.00 3.50 4.00	2.25 3.00 2.25 3.00 3.50 3.50 3.50 3.50 4.00 3.50 3.50 4.00	1.69 2.06 2.02 3.00 2.62 3.00 2.62 3.00 3.38 2.06 2.62 3.30	1.50-12 1.88-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.50-12 3.00-12 1.88-12 2.25-12 2.25-12 2.25-12 2.50-12	1.75-12 2.25-12 2.25-12 2.75-12 3.25-12 2.75-12 2.75-12 3.25-12 3.25-12 3.75-12 3.75-12 2.25-12 2.75-12	1.50-12 1.88-12 1.50-12 1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 3.00-12 1.88-12 2.25-12
KLM KLMN KLMN P	2.50 3.00 3.50 2.50 3.00 3.50 4.00 2.50 3.00 3.50 4.00	3.00 3.50 3.50 3.50 3.50 4.00 3.00 3.50 3.50 4.00	2.06 2.62 3.00 2.06 2.62 3.00 3.38 2.06 2.62 3.30	1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 3.00-12 1.88-12 2.25-12 2.50-12	2.25-12 2.75-12 3.25-12 2.75-12 3.25-12 3.25-12 3.75-12 2.25-12 2.25-12 2.75-12	1.88-12 2.25-12 2.50-12 1.88-12 2.25-12 2.50-12 3.00-12 1.88-12 2.25-12
L M N L M P	3.00 3.50 4.00 2.50 3.00 3.50 4.00	3.50 3.50 4.00 3.00 3.50 3.50 4.00	2.62 3.00 3.38 2.06 2.62 3.30	2.25-12 2.50-12 3.00-12 1.88-12 2.25-12 2.50-12	2.75-12 3.25-12 3.75-12 2.25-12 2.75-12	2.25-12 2.50-12 3.00-12 1.88-12 2.25-12
L M N P	3.00 3.50 4.00	3.50 3.50 4.00	2.62 3.30	2.25-12 2.50-12	2.75-12	2.25-12
R	5.00	4.50 5.00	3.88 4.25	3.00-12 3.25-12 3.50-12	3.75-12 4.25-12 4.75-12	3.00-12 3.25-12 3.50-12
L M N P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12
M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12
M N P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62 	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12
N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62 —	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12 —	3.00-12 3.25-12 3.50-12 4.00-12 —
S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 —	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12
	RS MNPRSY MNPRST NPRST STU ST	R         5.00           S         5.50           M         3.50           N         4.00           P         4.50           R         5.00           M         3.50           M         3.50           M         3.50           M         3.50           M         3.50           M         3.50           N         4.00           P         4.50           R         5.00           S         5.50           T         7.00           N         4.00           P         4.50           R         5.00           S         5.50           T         7.00           S         5.50           T         7.00           U         8.00           S         5.50           T         7.00           S         5.50           T         7.00	R         5.00         5.00           S         5.50         5.50           M         3.50         3.50           N         4.00         4.00           P         4.50         5.50           S         5.50         5.50           Y         6.00         6.00           M         3.50         3.50           M         3.50         4.50           M         3.50         4.50           N         4.00         4.00           P         4.50         4.50           R         5.00         5.50           S         5.50         5.50           R         5.00         5.50           R         5.00         5.50           R         5.00         5.50           T         7.00         7.00           S         5.50         5.50           T         7.00         7.00           S         5.50         5.50           T         7.00         7.00           U         8.00         8.00           S         5.50         5.50           T         7.00         7.00	R         5.00         5.00         4.25           S         5.50         5.50         4.62           M         3.50         3.50         3.00           N         4.00         4.00         3.38           P         4.50         4.50         3.88           R         5.00         5.50         4.62           Y         6.00         5.00         4.25           S         5.50         5.50         4.62           Y         6.00         5.00         4.25           S         5.50         5.50         4.62           M         3.50         3.00         A.25           S         5.50         5.50         4.62           Y         6.00         4.00         3.38           P         4.50         4.50         3.88           R         5.00         5.00         4.25           S         5.50         5.50         4.62           T         7.00         7.00            S         5.50         5.50         4.62           T         7.00         7.00            U         8.00         8.00	R         5.00         5.00         4.25         3.50-12           S         5.50         5.50         4.62         4.00-12           M         3.50         3.50         3.00         2.50-12           N         4.00         4.00         3.38         3.00-12           P         4.50         4.50         3.88         3.25-12           R         5.00         5.50         4.62         4.00-12           Y         6.00         5.00         4.25         3.50-12           S         5.50         5.50         4.62         4.00-12           Y         6.00         6.00         5.00         4.52           N         4.00         4.00         3.38         3.00-12           P         4.50         4.50         3.88         3.25-12           N         4.00         4.00         3.38         3.00-12           P         4.50         4.50         3.88         3.25-12           S         5.50         5.50         4.62         4.00-12           T         7.00         7.00          5.50-12           S         5.50         5.50         4.62         4.00-	R         5.00         5.00         4.25         3.50-12         4.75-12         5.52-12           M         3.50         5.50         4.62         4.00-12         5.25-12           M         3.50         3.50         3.00         2.50-12         3.25-12           N         4.00         4.00         3.38         3.00-12         3.75-12           P         4.50         4.50         3.88         3.25-12         4.75-12           S         5.00         5.00         4.25         3.50-12         4.75-12           S         5.50         5.50         4.62         4.00-12         5.25-12           Y         6.00         6.00         5.00         4.50-12         3.25-12           M         3.50         3.00         2.50-12         3.25-12         4.75-12           S         5.50         5.50         4.62         4.00-12         5.75-12           M         3.50         3.00         2.50-12         3.25-12         4.75-12           S         5.50         5.50         4.62         4.00-12         5.25-12           T         7.00         7.00          5.50-12            <




 14.00
 8.91
 15.00
 20.00
 24.00
 3.00
 18.00

 16.00
 9.03
 17.00
 22.00
 25.50
 4.25
 21.25

### Series MT

Dimen	sions	are Af	fected	by the	e Rod Dia	meter	VIEJ
C	YLINDER					T (THREAD)	
	ROD	MM	A	D	SM	IM Inter-	SF
BORE	DIA. CODE	ROD Dia.			SMALL MALE	MEDIATE	SHORT Female
2.00	F G	1.00 1.38	1.12 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12
5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12
7.00	K L M N P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12
8.00	L M P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12
9.00	M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12
10.00	M P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 —
12.00	N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62 —	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12 —	3.00-12 3.25-12 3.50-12 4.00-12
14.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 
16.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 — —

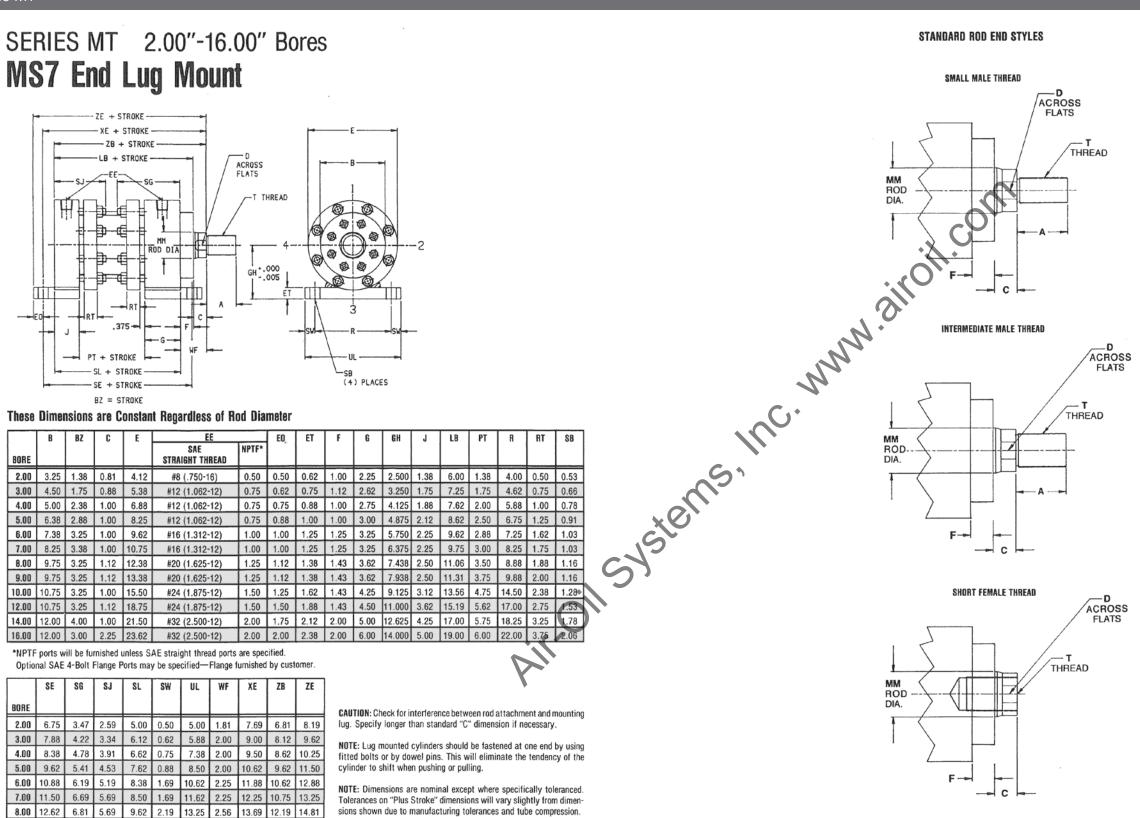
### Dimensions are Affected by the Rod Diameter ME5



--- C

5.00 4.53 7.62 8.50 10.25 2.00

6.00 5.19 8.38 10.25 13.25 2.25 10.62 7.00 5.69 8.50 11.25 14.25 2.25 10.75


8.00 5.69 9.62 12.50 15.25 2.56 12.19 9.00 5.69 9.88 13.50 16.25 2.56 12.43 10.00 6.78 12.12 15.50 19.00 2.43 14.56 12.00 7.91 13.75 17.50 21.00 2.56 16.31 **14.00** 8.91 15.00 20.00 24.00 3.00 18.00 **16.00** 9.03 17.00 22.00 25.50 4.25 21.25

9.62

### Series MT

C	YLINDE	1			Rod Diameter ME				
BORE	ROD DIA. Code	MM Rod Dia.	A	D	SM Small Male	IM Inter- Mediate Male	SF Short Female		
2.00	FG	1.00 1.38	1.12 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14		
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12		
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12		
5.00	JKLM	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12		
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12		
7.00	K L M P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12		
8.00	L M P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12		
9.00	M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12		
10.00	M P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12		
12.00	N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62 —	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12 —	3.00-12 3.25-12 3.50-12 4.00-12 —		
14.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 —	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 —		
16.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 	4.00-12 5.50-12 6.50-12	5.25-12 	4.00-12		

#### 201



 9.00
 12.88
 6.81
 5.69
 9.88
 2.19
 14.25
 2.56
 13.93
 12.43
 15.06

 10.00
 15.62
 7.91
 6.78
 12.12
 1.25
 17.00
 2.43
 16.19
 14.56
 17.43

 12.00
 17.25
 8.78
 7.91
 13.75
 1.62
 20.25
 2.56
 18.19
 16.31
 19.69

 14.00
 19.00
 9.66
 8.91
 15.00
 2.12
 22.50
 3.00
 20.00
 18.00
 21.75

 16.00
 21.00
 10.03
 9.03
 17.00
 2.00
 4.25
 23.25
 21.25
 25.55

### Series MT

MS7

uimen	limensions are Affected									
0	YLINDE	}				T (THREAD)				
BORE	ROD Dia. Code	MM Rod Dia.	A	D	SM SMALL MALE	IM INTER- Mediate Male	SF Short Female			
2.00	F G	1.00 1.38	1. <b>12</b> 1.62	.88 1.12	.75-16 1.00-14	.88-14 1.25-12	.75-16 1.00-14			
3.00	G H J	1.38 1.75 2.00	1.62 2.00 2.25	1.12 1.50 1.69	1.00-14 1.25-12 1.50-12	1.25-12 1.50-12 1.75-12	1.00-14 1.25-12 1.50-12			
4.00	H J K	1.75 2.00 2.50	2.00 2.25 3.00	1.50 1.69 2.06	1.25-12 1.50-12 1.88-12	1.50-12 1.75-12 2.25-12	1.25-12 1.50-12 1.88-12			
5.00	J K L M	2.00 2.50 3.00 3.50	2.25 3.00 3.50 3.50	1.69 2.06 2.62 3.00	1.50-12 1.88-12 2.25-12 2.50-12	1.75-12 2.25-12 2.75-12 3.25-12	1.50-12 1.88-12 2.25-12 2.50-12			
6.00	K L M N	2.50 3.00 3.50 4.00	3.00 3.50 3.50 4.00	2.06 2.62 3.00 3.38	1.88-12 2.25-12 2.50-12 3.00-12	2.25-12 2.75-12 3.25-12 3.75-12	1.88-12 2.25-12 2.50-12 3.00-12			
7.00	K L M P R	2.50 3.00 3.50 4.00 4.50 5.00	3.00 3.50 3.50 4.00 4.50 5.00	2.06 2.62 3.30 3.38 3.88 4.25	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12	2.25-12 2.75-12 3.25-12 3.75-12 4.25-12 4.75-12	1.88-12 2.25-12 2.50-12 3.00-12 3.25-12 3.50-12			
8.00	L M N P R S	3.00 3.50 4.00 4.50 5.00 5.50	3.50 3.50 4.00 4.50 5.00 5.50	2.62 3.00 3.38 3.88 4.25 4.62	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12	2.75-12 3.25-12 3.75-12 4.25-12 4.75-12 5.25-12	2.25-12 2.50-12 3.00-12 3.25-12 3.50-12 4.00-12			
9.00	M P R S Y	3.50 4.00 4.50 5.00 5.50 6.00	3.50 4.00 4.50 5.00 5.50 6.00	3.00 3.38 3.88 4.25 4.62 5.00	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 5.75-12	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 4.50-12			
10.00	M P R S T	3.50 4.00 4.50 5.00 5.50 7.00	3.50 4.00 4.50 5.00 5.50 7.00	3.00 3.38 3.88 4.25 4.62 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.25-12 3.75-12 4.25-12 4.75-12 5.25-12 —	2.50-12 3.00-12 3.25-12 3.50-12 4.00-12 —			
12.00	N P R S T	4.00 4.50 5.00 5.50 7.00	4.00 4.50 5.00 5.50 7.00	3.38 3.88 4.25 4.62	3.00-12 3.25-12 3.50-12 4.00-12 5.50-12	3.75-12 4.25-12 4.75-12 5.25-12	3.00-12 3.25-12 3.50-12 4.00-12			
14.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62 —	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 — —			
16.00	S T U	5.50 7.00 8.00	5.50 7.00 8.00	4.62	4.00-12 5.50-12 6.50-12	5.25-12 — —	4.00-12 — —			

#### Dimensions are Affected by the Rod Diameter

# **TECHNICAL INFORMATION**

TOP

VIEW

SIDE

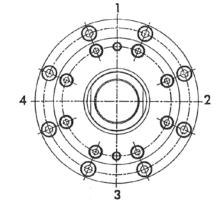
VIEW

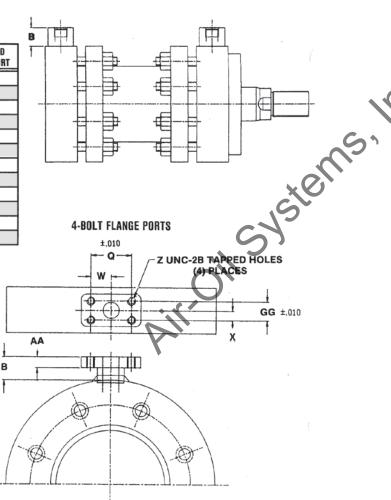
## PORT LOCATION

Numbers 1, 2, 3 and 4 around end view of cylinder drawings are for describing optional pipe port locations. Position 1 is standard. In many cases ports can be positioned at 2, 3 or 4 by rotating the heads at assembly. In other cases where it is undesirable to rotate the heads because of corresponding rotation of cylinder mountings, additional ports can usually be placed at positions 2, 3 or 4. Orders or inquiries should state port locations for rod and cap end heads, if other than standard. When changing port locations, careful attention should be paid to clearance between pipes, cylinder mountings, and the heads of any mounting screws.

Standard ports will be supplied at Position 1. Orders should specify pipe port locations if other than standard. Optional ports and bossed ports are available. Refer to the charts below to select the appropriate port.

#### CAUTION:


Cylinders are intended for operation with standard ports. Oversize or additional ports may result in unacceptable fluid velocities within the cylinder. Fluid velocities in the supply line in excess of 15 feet per second are not recommended.


### PORT SIZE

		SERIES MT OPTIO	NAL PORT	ING	
BORE	STANDARD Sae Port	OVERSIZED Bossed sae	DIM. B	STANDARD NPTF PORT	OVERSIZED Bossed Port
2.00	#8 ( .750-16)	#12 (1.062-12)	0.75	.50	.75
3.00	#12 (1.062-12)	#16 (1.312-12)	1.00	.75	1.00
4.00	#12 (1.062-12)	#16 (1.312-12)	1.00	.75	1.00
5.00	#12 (1.062-12)	#16 (1.312-12)	1.00	.75	1.00
6.00	#16 (1.312-12)	#20 (1.625-12)	1.12	1.00	1.25
7.00	#16 (1.312-12)	#20 (1.625-12)	1.12	1.00	1.25
8.00	#20 (1.625-12)	#24 (1.875-12)	1.38	1.25	1.50
9.00	#20 (1.625-12)	#24 (1.875-12)	1.38	1.25	1.50
10.00	#24 (1.875-12)	#32 (2.500-12)	1.62	1.50	2.00
12.00	#24 (1.875-12)	#32 (2.500-12)	1.62	1.50	2.00
14.00	#32 (2.250-12)		1.62	2.00	2.50
16.00	#32 (2.250-12)		1.62	2.00	2.50

#### **OPTIONAL SAE 4-BOLT FLANGE PORTS**

BORE	PORT DIA.	66	X	Q	w	AA	Z	В
2.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3.00	.75	.88	.44	1.88	.94	.50	.375-16	1.06
4.00	.75	.88	.44	1.88	.94	.50	.375-16	1.06
5.00	.75	.88	.44	1.88	.94	.50	.375-16	1.06
6.00	1.00	1.03	.52	2.06	1.03	.56	.375-16	1.25
7.00	1.00	1.03	.52	2.06	1.03	.56	.375-16	1.25
8.00	1.25	1.19	.59	2.31	1.16	.62	.438-14	1.44
9.00	1.25	1.19	.59	2.31	1.16	.62	.438-14	1.44
10.00	1.50	1.41	.71	2.75	1.38	.81	.500-13	1.75
12.00	1.50	1.41	.71	2.75	1.38	.81	.500-13	1.75
14.00	2.00	1.69	.85	3.06	1.53	1.06	.500-13	2.00
16.00	2.00	1.69	.85	3.06	1.53	1.06	.500-13	2.00





### HYDRAULIC FORCE DATA

The formula for determining the force producd by a cylinder is

F = A X PSI

Force (lbs.) = Cylinder Piste Area (sq. in.) X Line Pressure (Ibs./sq. in.)

Chart C1 shows the force produced by specific cylinder bore sizes at various pressures. Forces not listed on the chart can be calculated by using the formula F = A x PSI. An example of this formula follows:

EXAMPLE: Determine the thrust of a 14.00" bore cylinder operating at 1250 p.s.i. hydraulic line pressure. F = 153.94 x 1250 F = 192,425

To select the proper bore size, first determine the force required for your particular application, then add a factor of five percent to allow for internal frictional losses.

Locate the total required force in Chart C1 in the column that matches your system's operating pressure. The bore size that produces the necessary total force at the desired operating pressure is the proper size for your application.

#### **PRESSURE RATINGS**

Chart C2 shows the pressure ratings for Hanna Series MT Hydraulic Cylinders.

*Ratings are based on the ultimate tensile strength of the weakest component and smallest rod size.

hart C1		HYDRA	ULIC CY	LINDER	FORCE C	HART*				
	Piston		PUSH STROKE Values are Pounds of Force							
Bore	Area Sq. In.	250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	Oil Consumed Per Inch of Travel		
2.00	3.14	786	1571	2357	3142	4713	6285	.0136		
3.00	7.07	1767	3535	5302	7070	10605	14140	.0306		
4.00	12.56	3143	6285	9428	12560	18860	25140	.0544		
5.00	19.63	4910	9820	14730	19640	29460	39280	.0860		
6.00	28.27	7068	14140	21200	28270	42400	56540	.1224		
7.00	38.48	9623	19240	28870	38490	57740	76980	.1666		
8.00	50.26	12570	25140	37700	50270	75400	100500	.2176		
9.00	63.62	15905	31810	47715	63620	95430	127240	.2754		
10.00	78.54	19640	39270	58900	78540	117800	157100	.3393		
12.00	113.10	28280	56550	84820	113100	169600	226200	.4886		
14.00	153.94	38480	76970	115455	153940	230910	307880	.6664		
16.00	201.06	50270	100530	150800	201060	301590	402120	.8686		

Chart C1A

	Rod		To determine pull stroke thrust or consumption, deduct the value for the rod diameter from the corresponding cylinder bore in Chart C1.							
Rod Dia.	Area Sq. In.	250 PSI	500 PSI	750 PSI	1000 PSI	1500 PSI	2000 PSI	Per Inch of Travel		
1.00	.78	196	393	590	785	1175	1570	.0034		
1.37	1.48	371	742	1113	1485	2230	2970	.0067		
1.75 -	2.40	601	1202	1803	2405	3610	4810	.0104		
2.00	3.14	786	1572	2357	3142	4715	6285	.0136		
2.50	4.91	1225	2450	3682	4909	7350	9815	.0212		
3.00	7.07	1767	3535	5302	7070	10605	14140	.0306		
3.50	9.62	2405	4810	7216	9620	14435	19240	.0417		
4.00	12.56	3142	6284	9426	12570	18850	25140	.0544		
4.50	15.90	3976	7952	11930	15900	23860	31810	.0688		
5.00	19.63	4909	9820	14730	19640	29450	39270	.0860		
5.50	23.76	5940	11880	17820	23760	35640	47575	.1028		
6.00	28.27	7068	14135	21200	28270	42400	56540	.1224		
7.00	38.49	9623	19240	28870	38490	57740	76980	.1666		
8.00	50.26	12565	25130	37695	50260	75390	100520	.2176		

1 U.S. Gallon = 231 Cubic Inches

#### Chart C2 HYDRAULIC CYLINDER RATING* (P.S.I.)

#### PULL STROKE

To obtain forces not given, multiply piston area times operating pressure. *Forces given do not allow for frictional or other power losses.

Bore	3:1 Factor of Safety	4:1 Factor of Safety				
2.00	2650	2000				
3.00	2650	2000				
4.00	2650	2000				
5.00	2650	2000				
6.00	2650	2000				
7.00	2650	2000				
8.00	2650	2000				
9.00	2650	2000				
10.00	2650	2000				
12.00	2650	2000				
14.00	2650	2000				
16.00	2250	1700				

## STROKE LIMITATION DATA

The rod diameter has to be capable of withstanding any compressive force developed by the cylinder working against the load. A piston rod diameter with adequate column strength to handle the compressive force of the application can be selected from the convenient pre-calculated chart below.

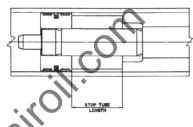
> NOTE: SEE APPLICATION FIGURES ON NEXT PAGE.

To use this chart find the force value, developed by the application, in the left column. Next, select the figure which resembles your application and then multiply "D" times the factor given in that figure. Finally, opposite the corresponding force value, find the value of "L" which is equal to, or greater than, the figure derived from factoring "D." Directly above is the rod diameter which is capable of withstanding the forces developed in the application.

EXAMPLE: Cylinder Bore = 10.00" Operating PSI = 2000 Force Value is 157,100 Application-Resembles Fig. 2 End Lug Mtg. Stroke = 80" "L" = 0.7 x 80; L = 56 Correct Rod Diameter = 4.00"

The total force is 157,000 lbs., and the value of "L" is 56 inches in this application. The smallest diameter rod capable of handling this situation is 4.00 inches.

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of "D."


FORCE						ALUE			_					8.00
VALUE						PISTO				And Statement and Statement and	E E0	6.00	7.00	8.00
in pounds		1.38	1.75	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00	7.00	0.00
400	85							<u> </u>						
600	70	132						<u> </u>						
800	60	114	184	045										
1000	54 47	102 90	165 145	215 188										
1700	47	78	145	165	258									
2100	37	70	114	149	232									
2500	34	65	104	136	213	304								
3000	31	58	95	124	192	280	381							
4000	27	51	83	108	162	242	330	430						
5000	24	46	74	96	150	217	295	385						
6000	22	42	67	89	137	198	269	352	443					
8000	19	36	58	76	119	172	233	305	384	475				
10000	17	32	52	68	106	153	209	273	344	426	514			
12000	15	29	48	62	97	139	190	249	314	328	468	559	761	
16000	13	26	42	54	84	121	165	215	272	316	407	484	659	861
20000		23	38	48	76	109	149	193	243	301	365	433	590	770
30000		18	31	39	61	89	120	153	198	245	297	354	481+	
40000			27	34	53	77	104	136	172	213	257	306	417	545
50000			23	31	48	69	93	122	153	190	230	274	373	the state of the s
60000			21	28	44	63	85	111	140	174	210	250	340	445
80000		ļ		24	38	54	74	96	122	143	192	217	295	385
100000					34	48	66	86	109	132	163	194	264	344
120000					31	44	60	79	100	121	142	177	240	314 291
140000						41	56	73	92	112	135	164	223	291
160000						38	52 47	63 61	86	93	129	153	187	212
200000							47	54	69	84	103	123	167	218
250000							42	54	09	04	103	120	152	199
300000					-								141	184
400000	-								1	+	-		131	172
500000			-							+		+	118	154

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of "D."

## STOP TUBE DATA

Long stroke cylinders can be subjected to a buckling action and excessive bearing wear due to the weight of the exposed rod. To reduce wear a stop tube is recommended.

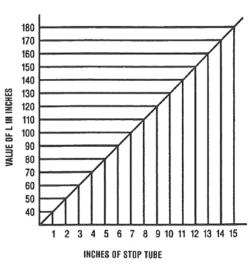
All cylinders cushioned and non-cushioned are supplied with single piston construction. General construction of cylinder stop tube is illustrated below.

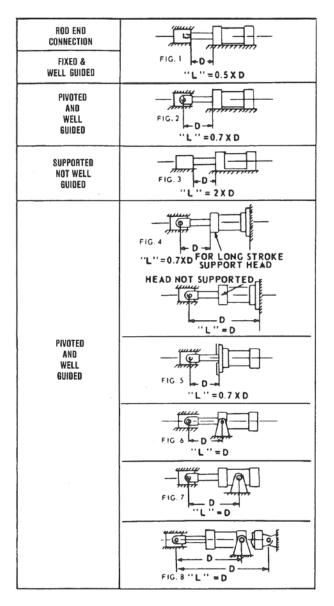


To determine it a stop tube is required, find the total value of "L" using the stroke limitation chart. Compare this value with the stop ube chart. If the value of "L" exceeds 40 inches, you can find the recommendation for stop tube length at the bot-tom of the chart. EXAMPLE PROBLEM: Cylinder Model MS7-MT-NO 9.45 MOVE

Pressure-1500 PSI End Lug Mount-Horizontal

From the description, the cylinder falls into Fig. 3. To determine the value of "L":


2 x Stroke (2 x 45) = 90


Total Value of "L" = 90

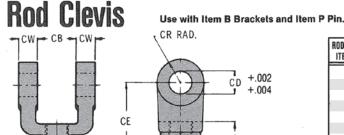
Looking this up on the chart, you'll find a recommended stop tube length of 6 inches.

The amount of stop tube will increase the stroke-plus dimensions of the cylinder by the same value. Add length of the stop tube to the value of "L" and recheck column strength on stroke limitation chart.

### **STOP TUBE CHART**






# **MOUNTING ACCESSORIES**

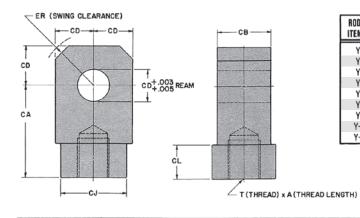
These are standard accessories matched to bore size and piston rod code. The Clevis Bracket (Item MB) fits the cap end of Model MP1. The Bracket (Item B) fits the piston Rod Clevis with the same number (i.e. B-7 Bracket fits V-7 Rod Clevis). The Clevis Pin (Item PC) is furnished with Model MP1 and fits the Clevis Bracket (Item MB). Specify if additional pins are required. If you require accessories other than standard for that bore size or piston rod, specify the item number on your order.

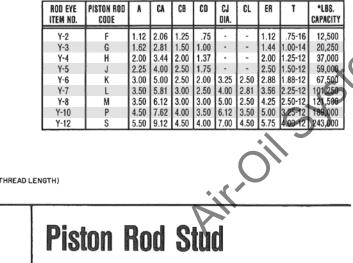
HEX SIZE

### * CAUTION:

Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.

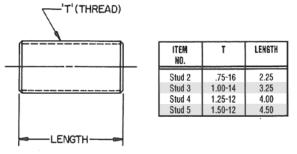


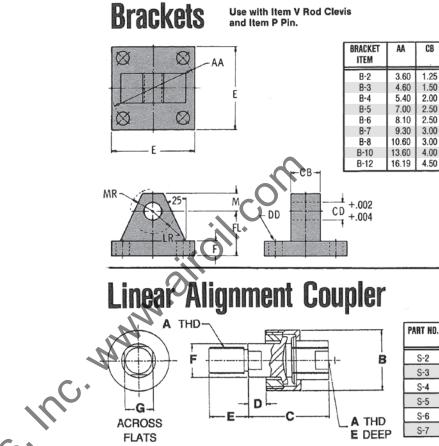

^Z T (THR'DS.)


## CR RAD. CD +.002

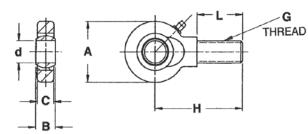
+.004

ROD CLEVIS Item No.	PISTON ROD Code	A	CB	CD	CE	CR	CW	H	Ť	*LBS. Capacity
V-2	F	1.12	1.25	.75	2.38	.88	.62	1.25	.75-16	14,000
V-3	G	1.62	1.50	1.00	3.12	1.12	.75	1.75	1.00-14	22,500
V-4	H	2.00	2.00	1.37	4.12	1.62	1.00	2.00	1.25-12	41,250
V-5	J	2.25	2.50	1.75	4.50	2.00	1.25	2.75	1.50-12	57,000
V-6	K	3.CO	2.50	2.00	5.50	2.25	1.25	3.00	1.88-12	75,000
V-7	L	3.50	3.00	2.50	6.50	2.88	1.50	3.50	2.25-12	112,500
V-8	M	3.50	3.00	3.00	6.75	3.12	1.50	3.88	2.50-12	135,000
V-10	Р	4.50	4.00	3.50	8.50	3.88	2.00	5.00	3.25-12	210,000
V-12	S	5.50	4.50	4.00	10.00	4.38	2.25	6.19	4.00-12	270,000

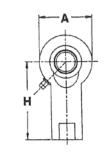

# **Rod Eye**







Pin Use with Item V Rod Clevis, Item Y Rod Eye and Item B Brackets.

4	PIN Item No.	LENGTH	DIAMETER	*LBS. Capacity
PIN	P2	3.09	.75	13,800
LENGTH	P3	3.60	1.00	24,500
	P4	4.66	1.37	46,500
	P5	5.66	1.75	75,150
9 9	P6	5.72	2.00	98,150
<u>Y</u>	P7	6.94	2.50	153,400
	P8	7.19	3.00	220,900
	P10	9.31	3.50	300,650
ISHED WITH OTTERS	P12	10.31	4.00	307,850






# **Universal Spherical Rod Eyes**



Female

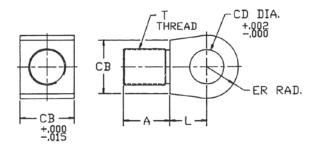


PIN DIA.

F

## Series MT

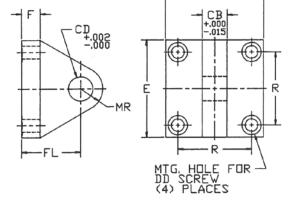
3	CD	DD	DE	E	F	FL	LR	М	MR	*LBS. Capacity
5	.750	.56	.88	3.50	.62	1.88	.88	.75	.88	6,300
0	1.000	.69	1.38	4.50	.75	2.25	1.25	1.00	1.25	10,000
0	1.375	.69	1.75	5.00	.88	3.00	1.75	1.38	1.75	19,250
0	1.750	.94	2.25	6.50	.88	3.12	2.12	1.75	2.12	21,200
0	2.000	1.06	2.56	7.50	1.00	3.50	2.38	2.00	2.38	24,500
0	2.500	1.19	3.12	8.50	1.00	4.00	2.94	2.50	2.94	25,000
0	3.000	1.31	3.25	9.50	1.00	4.25	3.19	2.75	3.19	22,500
0	3.500	1.81		12.62	1.69	7.25	3.62	3.50	3.62	58,500
0	4.000	2.06		14.88	1.94	7.75	4.12	4.00	4.12	73,250


).	A	В	C	D	E	F	6	н	MAX. PULL Load
	.750-16	1.75	2.31	0.50	1.12	0.94	0.81	1.12	8.750
	1.000-14	2.50	2.94	0.53	1.62	1.34	1.16	1.62	16.125
	1.250-12	2.50	2.94	0.53	1.62	1.34	1.16	1.62	19.600
	1.500-12	3.25	4.38	0.88	2.25	1.94	1.75	2.38	34.000
	1.875-12	3.75	5.62	1.00	3.00	2.94	-	—	41.250
	2.250-12	6.75	6.38	1.00	3.50	2.75	2.38	2.88	99.250

### Male

PART NO.	d	В	H	6	L	A	C	LBS. Capacity
UMY-12	0.75	0.66	3.00	.750-16	1.56	2.06	0.56	7500
UMY-20	1.25	1.09	4.56	1.250-12	2.56	3.31	0.94	20700
UMY-24	1.50	1.31	5.41	1.500-12	3.06	4.00	1.12	29800
UMY-28	1.75	1.53	6.31	1.750-12	3.56	4.62	1.31	40800
UMY-32	2.00	1.75	7.19	2.000-12	4.06	5.25	1.50	52800
UMY-36	2.25	1.97	8.12	2.250-12	4.50	5.88	1.69	66800
UMY-40	2.50	2.19	9.00	2.500-12	5.00	6.50	1.88	82800

PART NO.	d	B	H	6	L	A	N	C	Р	LBS. Capacity
UFY-12	0.75	0.66	3.00	.750-16	1.12	2.06	1.19	0.56	0.62	7500
UFY-20	1.25	1.09	4.56	1.250-12	1.81	3.31	1.88	0.94	0.75	20700
UFY-24	1.50	1.31	5.41	1.500-12	2.12	4.00	2.31	1.12	1.00	29800
UFY-28	1.75	1.53	6.31	1.750-12	2.44	4.62	2.75	1.31	1.19	40800
UFY-32	2.00	1.75	7.19	2.000-12	2.75	5.25	3.12	1.50	1.19	52800
UFY-36	2.25	1.97	8.12	2.250-12	3.00	5.88	3.38	1.69	1.38	66800
UFY-40	2.50	2.19	9.00	2.500-12	3.25	6.50	3.69	1.88	1.38	82800


# Male Rod Eye



ROD EYE ITEM NO.	A	CB	CD	ER	T	L	*LBS. Capacity
MY-2	.88	1.25	.752	.62	.75-16	.88	5,000
MY-3	1.25	1.50	1.252	1.12	1.00-14	1.38	9,300
MY-4	1.62	2.00	1.377	1.25	1.25-12	1.50	14,900
MY-5	1.88	2.25	1.502	1.38	1.50-12	1.62	22,250
MY-6	2.38	2.75	1.752	1.62	1.88-12	1.88	36,000
MY-8	2.88	3.25	2.002	1.88	2.25-12	2.12	53,200
MY-10	3.38	3.75	2.502	2.38	2.50-12	2.62	66,700
MY-12	4.00	4.50	3.002	2.88	3.00-12	3.12	97,300
MY-14	5.50	6.00	3.502	3.38	4.00-12	3.62	176,000
MY-16	6.50	7.50	4.252	4.00	5.00-12	4.25	280,000

## **Clevis Brackets**

Use with MP1 Mount.



BRACKET ITEM NO.	CB	CD	DD	E	F	FL	MR	R	*LBS. Capacity
MB-2	1.00	.752	.38	3.00	.56	1.75	.62	2.25	7,350
MB-3	1.25	1.252	.62	5.00	.94	3.00	1.12	3.75	18,562
MB-4	1.25	1.377	.75	6.00	1.19	3.88	1.25	4.50	21,000
MB-5	1.25	1.502	1.00	7.00	1.44	4.62	1.38	5.00	23,625
MB-6	1.50	1.752	1.25	8.25	1.69	5.62	1.62	6.00	33,525
MB-8	3.00	2.002	1.50	10.00	1.94	6.88	1.88	7.25	79,200
MB-10	3.50	2.502	1.75	13.25	2.19	8.75	2.38	10.00	118,650
MB-12	4.50	3.002	2.00	15.75	2.44	10.25	2.88	12.00	186,300
MB-14	5.00	3.502	2.00	18.00	2.44	11.25	3.38	14.25	231,707
MB-16	6.00	4.252	2.50	20.50	2.94	12.50	4.00	16.00	354,387

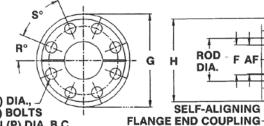
PIN LENGTH

	0.0	0.0	L r	6		850		*1.00
	CD	DD	E	F	FL	MR	R	*LBS. Capacity
0	.752	.38	3.00	.56	1.75	.62	2.25	7,350
5	1.252	.62	5.00	.94	3.00	1.12	3.75	18,562
5	1.377	.75	6.00	1.19	3.88	1.25	4.50	21,000
5	1.502	1.00	7.00	1.44	4.62	1.38	5.00	23,625
0	1.752	1.25	8.25	1.69	5.62	1.62	6.00	33,525
0	2.002	1.50	10.00	1.94	6.88	1.88	7.25	79,200
0	2.502	1.75	13.25	2.19	8.75	2.38	10.00	118,650
0	3.002	2.00	15.75	2.44	10.25	2.88	12.00	186,300
0	3.502	2.00	18.00	2.44	11.25	3.38	14.25	231,707
0	4.252	2.50	20.50	2.94	12.50	4.00	16.00	354,387

## **Clevis Pin**

Use with Item MY Rod Eye and Item MB Clevis Bracket. Included with MP1 Mount.

	Ť	*LBS. Capacity	DIAMETER	LENGTH	PIN Item No.
PIN		13,800	.750	3.25	PC-2
LENGTH		38,350	1.250	3.75	PC-3
		46,500	1.375	4.00	PC-4
		55,200	1.500	4.75	PC-5
		75,150	1.750	5.50	PC-6
	PIN 上	98,150	2.000	7.00	PC-8
	DIA.	153,400	2.500	8.00	PC-10
		220,900	3.000	10.50	PC-12
HED WITH		300,650	3.500	11.50	PC-14
TERS	01	443,000	4.250	13.50	PC-16

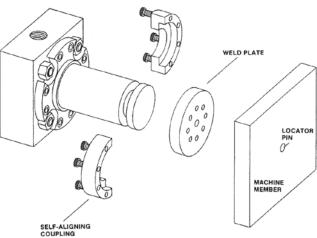

### * CAUTION:

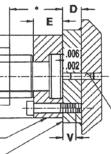
Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.

# Self-Aligning Rod End Coupling

Hanna's Self-Aligning Rod End Coupling permits fast, easy assembly, disassembly, installation and servicing. Precision-machined, two-piece steel construction provides close radial alignment between piston rod end and machine member.

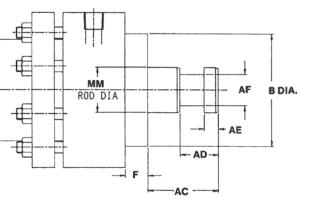
Allowing for radial movement increases seal and bearing life within the cylinder by eliminating much of the side load. High-tensile alloy steel, socket head cap screws and all-steel construction are designed to take full cylinder load with a factor of safety.




7.50 4.252 4.00 5.00-12 4.25 280,000	full cylinder I						gned to	tuno			~	0			Q			
	The Self-Alig juction with H	ning R Ianna'	od Er s RC i	d Co rod er	upling nd.	g is us	ed in co	on-				G	Les.					MAC
	A Weld Plate Self-Aligning drilling and ta your machine	Rod E	nd Co each	buplin hole t	ig. It e to ma	elimin tch th	ates lay- e coupli	-out, ing o	n		SEL	F-ALIGNI	NG					
	is accurately								, .									
	positioning to																	
++R							3						. ±-"F	" DIM	'AF' DIM	. = RAD	IAL CLEA	RAN
	1		1							-	- " +-   E		- si	EE ROD	CHART			
		S°́	1	-							-				-	~		
		1	$\langle \delta \rangle$	ŦØ		Ĩ	1			Ц		$\langle \rangle \rangle$			Øte	Z/		
		Rº H	67	K	Hai			1			74	1.006	$V \wedge$	65	~   <i>'</i>	) A	A	
		H- ((	<u>12</u>		411	- ċ	н в	ÓD -	F AF	LL.	_	.002	KA -	14			1	
FOR -		1 16	5	1 /	-all	i	D T	IA.						A	Ĩ	Ŕ		
			(y \		V N	1	1									~		
S. Cab		- V	C.A	Th	[]]				11		742			12	di	~~	/	
s Si	(M) D	IA	Ś	1.Q	]]				11					Ĺ	Ø	Ì	/	
s since the second s	(M) D (N) B	IA., J	Ó	19	<u>//</u>		SELF-							(L	Ø	Ì		
	(M) D (N) B ON (F	IA., OLTS P) DIA.	<u>.</u> В.С.	P	FI	LANG	E END	COU	PLING									N
R *LBS. CAPACITY	(M) D (N) B ON (F	OLTS	Э.С.		FI	LANG	E END	COU										N
R         *LBS. CAPACITY           2.25         7,350           3.75         18,552           4.50         21,000	(M) D (N) B ON (F COUPLING NO.	OLTS P) DIA.		E	F	LANG	E END	COU	PLING		s	~ ~	WELD PLATE NO.		G	OMEF W PIN	R) BOLT	
R         *LBS. CAPACITY           2.25         7,350           3.75         18,552           4.50         21,000           5.00         23,625	(M) D (N) B ON (F COUPLING NO. CP-100	OLTS	AF ‡	.62	F ‡	н	E END ( WE	COUI ELD F	PLING PLATE P	R	s 60	v .375	WELD PLATE NO. WP-100	(BÝ ( D	G	OMER	7)	
R         *LBS. CAPACITY           2.25         7,350           3.75         18,552           4.50         21,000           5.00         23,625           j 6.001         33,525	(M) D (N) B ON (F COUPLING NO. CP-100 CP-138	OLTS P) DIA. P) DIA. P) DIA. DIA. MM 1.00 1.38	AF ‡ .688 .875	.62 .69	<b>F</b> ‡ .750 .938	H 2.00 2.50	E END ( WE M .250-20 .312-18	COUI ELD F N 6 6	PLING PLATE P 1.50 2.00	R 30 30	60 60	.375	NO. WP100 WP138	(BÝ ( D .500 .625	G 2.50 3.00	W PIN DIA. .25 .25	BOLT TORO FT. LE 13 25	
R         *LBS. CAPACITY           2.25         7,350           3.75         18,552           4.50         21,000           5.00         23,625           j 6.001         33,525           7.25         79,200	(M) D (N) B ON (F COUPLING NO. CP-100 CP-138 CP-175	OLTS ) DIA. P) DIA. P) DIA. DIA. MM 1.00 1.38 1.75	AF ‡ .688 .875 1.12	.62 .69 .88	F ‡ .750 .938 1.19	H 2.00 2.50 3.00	M .250-20 .312-18 .375-16	COUI ELD F N 6 8	PLING PLATE P 1.50 2.00 2.38	R 30 30 22.5	60 60 45	.375 .562 .625	NO. WP100 WP138 WP175	(BÝ ( D .500 .625 .750	G 2.50 3.00 3.50	W PIN DIA. .25 .25 .25	BOLT TORC FT. LE 13 25 45	
R         *LBS. CAPACITY           2.25         7,350           3.75         18,552           4.50         21,000           5.00         23,625           i 6.001         33,525           7.25         79,200           10.00         118,650           12.00         186,300	(M) D (N) B ON (F COUPLING NO. CP-100 CP-138 CP-175 CP-200	OLTS ) DIA. P) DIA. P) DIA. P) DIA. MM 1.00 1.38 1.75 2.00	AF ‡ .688 .875 1.12 1.38	.62 .69 .88 1.25	<b>F</b> <b>‡</b> .750 .938 1.19 1.44	H 2.00 2.50 3.00 3.50	M .250-20 .312-18 .375-16 .375-16	COUI ELD F N 6 6 8 12	PLING PLATE P 1.50 2.00 2.38 2.69	<b>R</b> 30 30 22.5 15	60 60 45 30	.375 .562 .625 .750	NO. WP100 WP138 WP175 WP200	(BÝ ( D .500 .625 .750 .875	G 2.50 3.00 3.50 4.00	OMEF PIN DIA. .25 .25 .25 .38	BOLT TORO FT. LE 13 25 45 45	
R         *LBS. CAPACITY           2.25         7.350           3.75         18,562           4.50         21,000           5.00         23,625           i 6.001         33,525           7.25         79,200           10.00         118,650           12.00         186,300	(M) D (N) B ON (F COUPLING NO. CP-100 CP-138 CP-175 CP-200 CP-250 CP-250	OLTS ) DIA. P) DIA. DIA. MM 1.00 1.38 1.75 2.00 2.50	AF ‡ .688 .875 1.12 1.38 1.75	.62 .69 .88 1.25 1.38	<b>F</b> <b>‡</b> .750 .938 1.19 1.44 1.88	H 2.00 2.50 3.00 3.50 4.25	M 250-20 .312-18 .375-16 .375-16 .500-13	COUI ELD F N 6 6 8 12 8	PLING PLATE P 1.50 2.00 2.38 2.69 3.44	<b>R</b> 30 30 22.5 15 22.5	60 60 45 30 45	.375 .562 .625 .750 .875	NO. WP100 WP138 WP175 WP200 WP250	(BÝ ( .500 .625 .750 .875 1.00	G 2.50 3.00 3.50 4.00 5.00	W PIN DIA. .25 .25 .25 .38 .38	BOLT TORO FT. LE 13 25 45 45 80	
	CP-300	BOD DIA.           POD DIA.           1.00           1.38           1.75           2.00           2.50           3.00	AF ‡ .688 .875 1.12 1.38 1.75 2.25	.62 .69 .88 1.25 1.38 1.88	<b>F</b> <b>‡</b> .750 .938 1.19 1.44 1.88 2.38	H 2.00 2.50 3.00 3.50 4.25 5.00	M .250-20 .312-18 .375-16 .375-16 .500-13 .500-13	COUI ELD F N 6 6 8 12 8 12	PLING PLATE 1.50 2.00 2.38 2.69 3.44 4.00	<b>R</b> 30 30 22.5 15 22.5 15	60 60 45 30 45 30	.375 .562 .625 .750 .875 .875	NO. WP-100 WP-138 WP-175 WP-200 WP-250 WP-300	(BÝ ( 500 .625 .750 .875 1.00 1.00	G 2.50 3.00 3.50 4.00 5.00 5.50	W PIN DIA. .25 .25 .25 .38 .38 .38	BOLT TORC FT. LE 13 25 45 45 45 80 80	
R         *LBS. CAPACITY           2.25         7,350           3.75         18,562           4.50         21,000           5.00         23,625           16.00         33,525           7.25         79,200           10.00         118,650           12.00         186,300           14.25         231,707           16.00         354,387	CP-300 CP-350	BOD DIA.           BOD DIA.           MM           1.00           1.38           1.75           2.00           2.50           3.00           3.50	AF ‡ .688 .875 1.12 1.38 1.75 2.25 2.50	.62 .69 .88 1.25 1.38 1.88 2.00	<b>F</b> .750 .938 1.19 1.44 1.88 2.38 2.62	H 2.00 2.50 3.00 3.50 4.25 5.00 5.88	M .250-20 .312-18 .375-16 .375-16 .500-13 .500-13 .625-11	COUI ELD F N 6 6 8 12 8 12 12	PLING PLATE P 1.50 2.00 2.38 2.69 3.44 4.00 4.69	<b>R</b> 30 30 22.5 15 22.5 15 15	60 60 45 30 45 30 30 30	.375 .562 .625 .750 .875 .875 1.00	NO. WP100 WP138 WP175 WP200 WP250 WP350	<b>D</b> .500 .625 .750 .875 1.00 1.00 1.12	G 2.50 3.00 3.50 4.00 5.50 6.50	W PIN DIA. .25 .25 .25 .38 .38 .38 .38	<b>BOLT</b> <b>TORO</b> <b>FT. LE</b> 13 25 45 45 45 80 80 200	
	CP-300	BOD DIA.           BOD DIA.           MM           1.00           1.38           1.75           2.00           2.50           3.00           3.50           4.00	AF ‡ .688 .875 1.12 1.38 1.75 2.25 2.50 3.00	.62 .69 .88 1.25 1.38 1.88 2.00 2.00	<b>F</b> <b>‡</b> .750 .938 1.19 1.44 1.88 2.38	H 2.00 2.50 3.00 3.50 4.25 5.00 5.88 6.38	M .250-20 .312-18 .375-16 .375-16 .500-13 .500-13	COUI ELD F N 6 6 8 12 8 12 12 12	PLING PLATE 1.50 2.00 2.38 2.69 3.44 4.00	<b>R</b> 30 30 22.5 15 22.5 15 15 15 15	60 60 45 30 45 30	.375 .562 .625 .750 .875 .875 1.00 1.00	NO. WP100 WP138 WP175 WP200 WP250 WP350 WP350 WP400	<b>D</b> .500 .625 .750 .875 1.00 1.00 1.12 1.12	G 2.50 3.00 3.50 4.00 5.00 5.50 6.50 7.00	W PIN DIA. .25 .25 .25 .38 .38 .38	BOLT TORC FT. LE 13 25 45 45 45 80 80	
	CP	BOD DIA.           ROD DIA.           MM           1.00           1.38           1.75           2.00           2.50           3.00           3.50           4.00           4.50           5.00	AF + .688 .875 1.12 1.38 1.75 2.25 2.50 3.00 3.50 3.88	.62 .69 .88 1.25 1.38 1.88 2.00 2.00 2.38 2.50	<b>F</b> <b>‡</b> .750 .938 1.19 1.44 1.88 2.38 2.62 3.12 3.62 4.00	H 2.00 2.50 3.00 3.50 4.25 5.00 5.88 6.38 6.38 6.38 7.38	M 250-20 312-18 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-17 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16 375-16	COUI ELD F N 6 6 8 12 12 12 12 12	PLING PLATE P 1.50 2.00 2.38 2.69 3.44 4.00 4.69 5.19 5.69 6.19	<b>R</b> 30 30 22.5 15 22.5 15 15 15 15	60 60 45 30 45 30 30 30 45 30	.375 .562 .625 .750 .875 1.00 1.00 1.12 1.00	NO.           WP-100           WP-138           WP-200           WP-250           WP-300           WP-350           WP-450           WP-450           WP-500	<b>D</b> .500 .625 .750 .875 1.00 1.00 1.12 1.12 1.25 1.38	G 2.50 3.00 3.50 4.00 5.50 6.50 7.00 7.50 8.00	OMER PIN 01A. .25 .25 .25 .25 .38 .38 .38 .38 .38 .38 .38 .38 .38 .38	<ul> <li>BOLT TORC FT. LE</li> <li>13</li> <li>25</li> <li>45</li> <li>45</li> <li>45</li> <li>80</li> <li>80</li> <li>200</li> <li>200</li> </ul>	
	CP-300 CP-350 CP-400 CP-450	BOD DIA.           ROD DIA.           MM           1.00           1.38           1.75           2.00           2.50           3.00           3.50           4.00           4.50	AF + .688 .875 1.12 1.38 1.75 2.25 2.50 3.00 3.50 3.88	.62 .69 .88 1.25 1.38 1.88 2.00 2.00 2.38 2.50	<b>F</b> <b>‡</b> .750 .938 1.19 1.44 1.88 2.38 2.62 3.12 3.62	H 2.00 2.50 3.00 3.50 4.25 5.00 5.88 6.38 6.38 6.38 7.38	E END ( WE 250-20 312-18 375-16 375-16 500-13 .600-13 .625-11 .750-10	COUI ELD F N 6 6 8 12 12 12 12 12 8	PLING PLATE P 1.50 2.00 2.38 2.69 3.44 4.00 4.69 5.19 5.69	<b>R</b> 30 30 22.5 15 22.5 15 15 15 15 15 22.5	60 60 45 30 45 30 30 30 30 45	.375 .562 .625 .750 .875 1.00 1.00 1.12 1.00	NO. WP100 WP138 WP200 WP200 WP350 WP350 WP450	<b>D</b> .500 .625 .750 .875 1.00 1.00 1.12 1.12 1.25 1.38	G 2.50 3.00 3.50 4.00 5.50 6.50 7.00 7.50	OMEF PIN 01A. .25 .25 .25 .38 .38 .38 .38 .38 .38 .38 .38	<ul> <li>BOLT TORC FT. LE</li> <li>13</li> <li>25</li> <li>45</li> <li>45</li> <li>45</li> <li>80</li> <li>80</li> <li>200</li> <li>200</li> <li>350</li> </ul>	

### **RC ROD END DIMENSIONS**


ROD STYLE	ROD	ROD DIA MM	AC	AD	AE	AF DIA
RC-100	F	1.00	1.62	.938	.375	.688
RC-138	G	1.38	2.25	1.06	.375	.875
RC-175	н	1.75	2.75	1.31	.500	1.12
RC-200	J	2.00	3.12	1.69	.625	1.38
RC-250	, K	2.50	4.00	1.94	.750	1.75
RC-300	L	3.00	4.50	2.44	.875	2.25
RC350	м	3.50	4.50	2.69	1.00	2.50
RC-400	N	4.00	5.00	2.69	1.00	3.00
RC-450	Р	4.50	5.50	3.19	1.50	3.50
RC-500	R	5.00	6.00	3.19	1.50	3.88
RC-550	S	5.50	6.50	3.94	1.88	4.38





t -- 'F' DIM. -- 'AF' DIM. = RADIAL CLEARANCE - SEE ROD CHART

### (W) DIA. LOCATOR PIN (BY CUSTOMER)



# **ELECTRONIC & ELECTRICAL CONTROLS Proximity Switches**

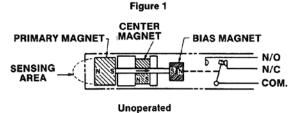
Hanna offers GO Model 75 and Model 77 proximity switches for mounting on Series MT cylinders through 8.00" bores.

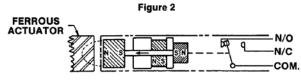
The GO switch uses three magnets to move a common terminal between two contacts. The primary magnet is held in the retracted position. with one of its magnetic poles attracted to the unlike pole of the center magnet. At the same time, the bias magnet is being repelled by the like pole of the bias magnet. In this mode (Figure 1), the rod connected to the primary magnet keeps the common terminal in the Normally Closed (N/C) contact position.

When a ferrous actuator enters the sensing area of the switch (Figure 2), the magnetic attraction of the primary magnet to the center magnet is weakened. The primary magnet moves toward the actuator, pulling the connecting rod forward and moving the common terminal to the Normally Open (N/O) contact position.

## SPECIFICATIONS

Size-(Model 75): 5/8" dia. x 4-5/16" long, with 5/8"-18 NF x 2-13/16" threads. Size-(Model 77): 3/4" dia. x 5-13/16" long, with 3/4"-16 UNF x 2-7/8" threads. Sensing Distance: 0.100" end sensing. Differential: Approximately .040". Response Time: 8 milliseconds. Temperature Rating: -40° F to +221° F. Contacts: Single Pole, Double Throw, Form C Silver cadmium oxide, gold flashed. Rating: 2 amp @ 240 VAC, 50 mA @ 24VDC (CSA only). 250 VDC @ .5 amp resistive (UL only). Housing: Stainless steel.


Conduit Outlet: 1/2"-14 NPT. One location. Repeatability: 0.002" typical.


## **ORDERING INFORMATION**

GO Models 75 and 77 Proximity Switches are available on Hanna's Series MT Mill-Type Hydraulic Cylinders 2.00" through 8.00" bores. Consult factory for availability and mounting on bore sizes over 8.00".

Switches will be mounted at the factory according to customer specified locations. Specify mounting position of switches and pipe port location, referring to numbered positions on end view of cylinder as shown.

Position location for both the Front Head and Blind Head is determined by viewing the cylinder at the Rod End. Position 5 is at back face of Blind Head.







Model 75

4.31

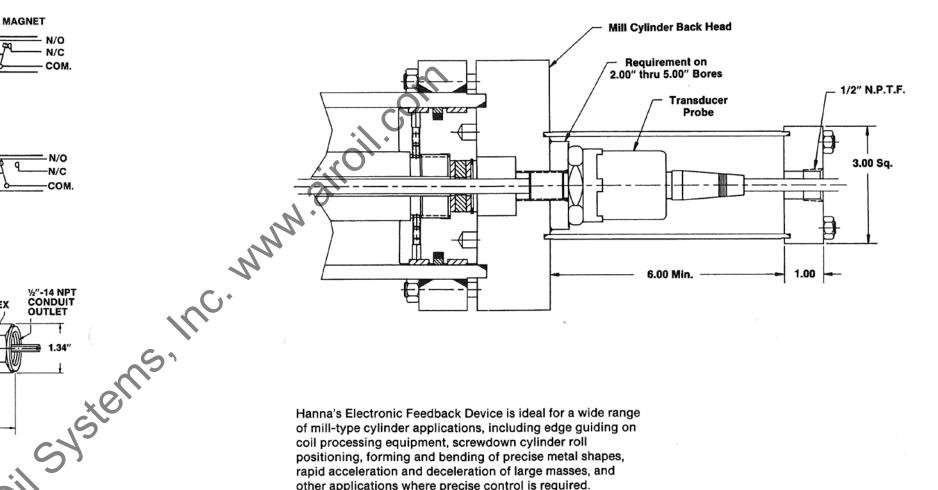
Model 77

¾"-16 UNF-2A

THREADS

1.00" A.F. ON HEX

%"-18 UNF-2A THREADS


2.81

.624" Ø

.750"

- 1.81'

1.88



Hanna's Electronic Feedback Device is ideal for a wide range of mill-type cylinder applications, including edge guiding on coil processing equipment, screwdown cylinder roll positioning, forming and bending of precise metal shapes, rapid acceleration and deceleration of large masses, and other applications where precise control is required. Positional accuracy of ±.001 and repeatability of ±.001 are easily obtained in digital systems. Analog responses on positions less than .010 are common.

Standard mountings for Series MT cylinders equipped with the Electronic Feedback Device are MT4 Intermediate Fixed Trunnion, ME5 Head Flange and MS7 End Lugs. MT cylinders with mounting styles MP1 Fixed Double Ear Clevis, MP3 Fixed Single Ear Clevis and MPU3 Spherical Bearing Mount can be custom modified to accept the feedback device. Please consult Factory.

The Electronic Feedback Device is available on all bore sizes from 2.00" through 16.00". Hanna can provide Series MT cylinders with the device installed as a complete package. We can also supply MT cylinders fully prepared to accept customer-installed devices.

1/2"-14 NPT

CONDUIT

1.00" A.F. ON HEX OUTLET

## **Electronic Feedback Device**

## INSTALLATION, OPERATION AND MAINTENANCE DATA

### **INSTALLATION:**

The pipe ports of cylinders are sealed with plastic plugs. The plugs protect the precision internal parts by sealing out damaging dirt and grit. Do not remove port seals until ready to conect piping. To protect cylinders, clean all pipes and pipe fittings of dirt, scale, and thread chips. A filter is recommended to keep the operating fluid free of foreign matter.

Accurate mounting and alignment are essential to proper cylinder performance. By eliminating side loading, packing and bearing life will be increased. Mounting surfaces should be straight, bearings for pin and trunnion mounting must be in line.

Dirt or abrasive matter adhering to the piston rod may cause excessive wear to the piston rod and gland. For best results, protect the cylinder from such dirt. A piston rod protective shield is ideal for this purpose.

### **OPERATION:**

Needle valves in cylinder head and cap of adjustable cushioned cylinders permit regulation of cushioning effect. Adjust needle valve with an Allen wrench, rotating clockwise to increase cushioning and counterclockwise to decrease cushioning effect. Cushion adjustment needles require only about one to one and a half turn adjustment. Speed control valves are essential for obtaining the best cushioning operation. A proper balance of cushion needle and flow control valve adjustment should result in a smooth stop with no bouncing.

### **MAINTENANCE:**

Parts which may need replacement in the course of normal use are the rod wiper and the packings for the piston rod.

## FASTENER TORQUES

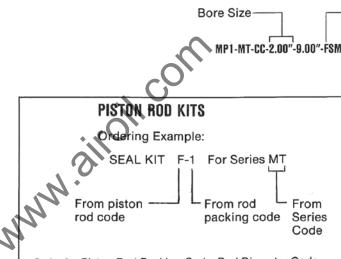
	HEAD BOL	T TOROUE	GLAND SCREW TORQUE			
BORE	BOLT SIZE	TORQUE	SCREW SIZE	TORQUE		
2.00	.312-18	25 ft-lbs.	.312-18	25 ft-lbs.		
3.00	.312-18	25	.312-18	25		
4.00	.375-16	45	.375-16	45		
5.00	.500-13	100 .437-14		60		
6.00	.625-11	200	.500-13	100		
7.00	.625-11	200	.500-13	100		
8.00	.625-11	200	.625-11	200		
9.00	.625-11	200	.625-11	200		
10.00	.750-10	350	.625-11	200		
12.00	.875-9	575	.625-11	200		
14:00	.875-9	575	.750-10	350		
16.00	1.000-8	950	.750-10	350		

The need for replacement of the piston rod packing will become evident through the escaping of fluid around the gland.

To replace rod wiper or rod packings, remove the gland from the cylinder. Remove worn rod wiper and rod packing. To reassemble, slip new rod wiper and rod packing into grooves. Care should be exercised not to nick the lips of the packings. Be sure to retorque gland screws to the specified torque for the cylinder. (See torque chart below.)

It is recommended that new "O" rings be installed each time the cylinder is disassembled for maintenance. This applies to tube and gland "O" rings. The cushion needle valve "O" rings should also be replaced if these parts are disassembled. When reassembling, be sure to apply proper bolt torque. (See torque chart below.)

If the cushion action of the cylinder fails, check to determine if the cushion sleeve has been worn on its outside diameter, and if foreign particles have become lodged between the face of the sleeve and the cylinder head bore.


If the cylinder fails to perform the job for which it is ordered, check the following items: 1. That the correct cylinder diameter has been chosen to do the job required. 2. That there is adequate line pressure at the cylinder, under both static and dynamic conditions. 3. That the piston rod is aligned correctly with the load it is pushing or pulling. 4. That the piston packings or the piston rod packings are not worn, allowing pressure to escape.

Replacement parts can be furnished quickly if you will indicate the serial number of the cylinder as shown on the name plate, and the part name and number, as shown. The cylinder illustrated is for reference purposes only, and does not represent any particular model.

## SEAL KITS

All cylinders are fully field identifiable, including packing option codes.

## NAMEPLATE CODE EXAMPLE



Order by Piston Rod Packing Code, Rod Diameter Code, and Cylinder Series Code from nameplate as outlined.

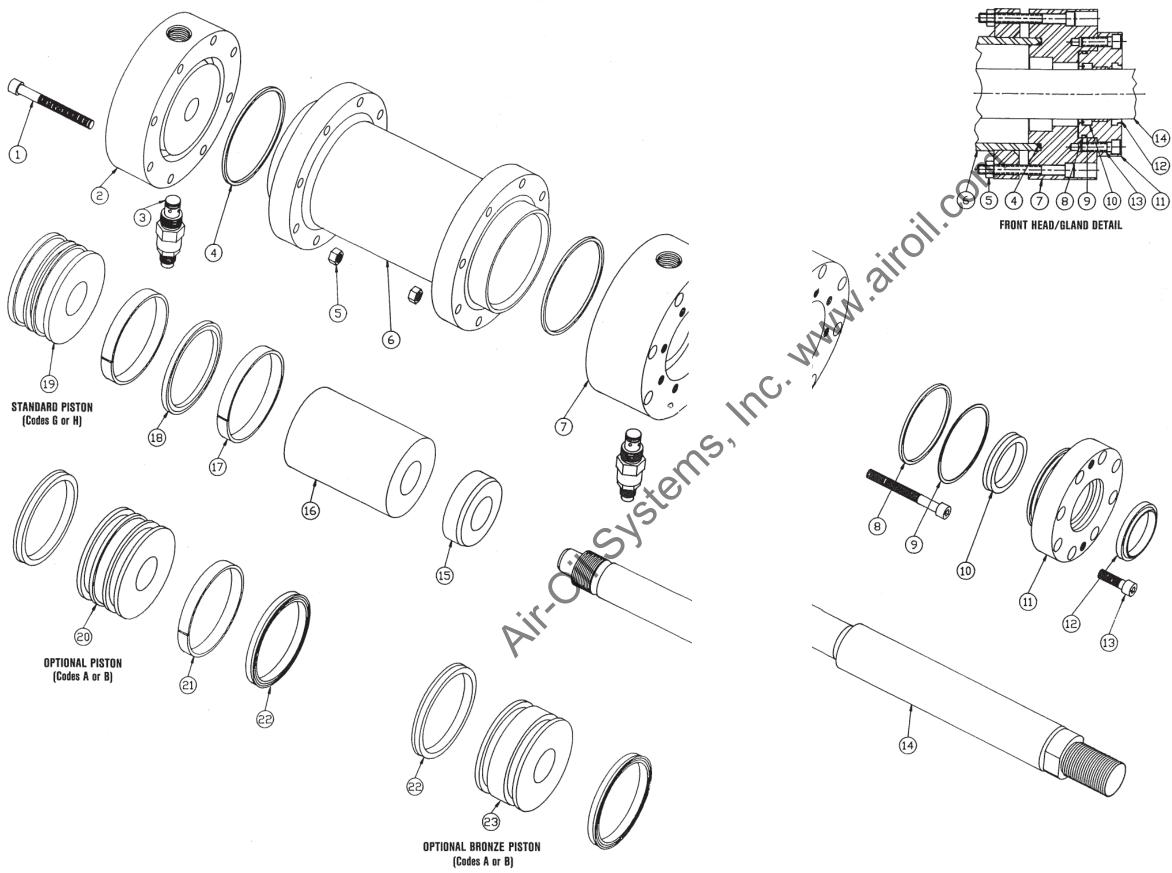
### (STANDARD)

Temperature Range -20°F to +200°F Buna-N O-Rings, Polyurethane Rod Packing and Polyurethane Wiper.

3 (OPTIONAL)

Temperature Range -20°F to +400°F Viton O-Rings, Viton Rod Packing, Viton Wiper.

## CYLINDER WEIGHTS


BORE	BASE WEIGHT At Zero Stroke	BODY WEIGHT Per Inch of Stroke	ROD Size	ROD WEIGHT PER INCH OF STROKE
2.00	18 lbs.	.50 lbs.	1.00	.22 lbs.
3.00	41	.72	1.38	.42
4.00	70	1.20	1.75	.68
5.00	124	1.88	2.00	.89
6.00	178	2.12	2.50	1.39
7.00	226	3.33	3.00	2.00
8.00	333	3.77	3.50	2.72
9.00	397	4.22	4.00	3.56
10.00	648	4.67	4.50	4.50
12.00	1062	11.56	5.00	5.56
14.00	1575	13.34	5.50	6.72
16.00	2188	15.11	6.00	8.00
			7.00	10.89
			8.00	14.22

### -Rod Diameter Code

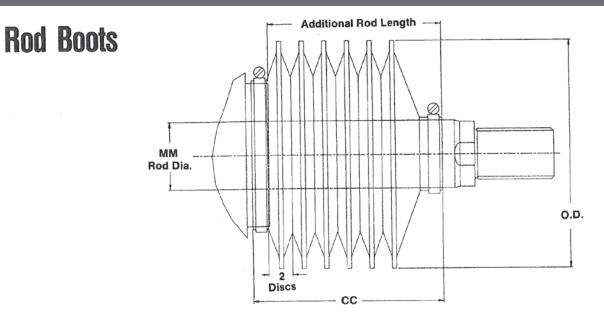
11	3
-	PISTON PACKING KITS
	Ordering Example:
	SEAL KIT G-2.00 For Series MT
	From piston ——— Bore size From packing code Series Code
	Order by Piston Packing Code, Bore Size, and Cylinder Series Code from nameplate as outlined.
	A Temperature Range -20°F to +200°F Polyurethane U-Cup Seal with Buna Expander, Wear Strip, Buna Tube Seals.
	B Temperature Range -20°F to +400°F Viton U-Cup Seal with Viton Expander, Wear Strip Viton Tube Seals.
	G Temperature Range -20°F to +200°F Piston Wear Strip(s), Filled Teflon seal w/Buna-N Expander, Buna-N Tube Seals.

H Temperature Range -20°F to +400°F Piston Wear Strip(s), Filled Teflon Seal w/Viton Expander, Viton Tube Seals.

## PARTS LIST



# When ordering replacement parts, identify Model Number, Serial Number and Part Number, as shown below.


PART NO.	NO. REQ'D.	DESCRIPTION
1	**	Cap Screw
2	1	Back Head
3	2	Cushion Valve
4*	2	O-Ring
5	**	Nut
6	1	Tube
7	1	Front Head
8*	1	O-Ring
9*	1	Back Up
10*	1	Rod Packing
11	1	Gland
12*	1	Rod Wiper
13	**	Gland Screw
14	1	Piston Rod
15	1	Cushion Sleeve
16	1	Stop Tube
17*	**	Piston Wear Ring
18*	1	Filled Teflon Seal with Buna Expander
19	1	Piston
20	1	Piston***
21*	1	Piston Wear Ring
22*	2	Piston Packing
23	1	Bronze Piston***

* Recommended Spare Parts
** As Required
*** Optional Parts

(12)

217

# **OTHER ACCESSORIES**

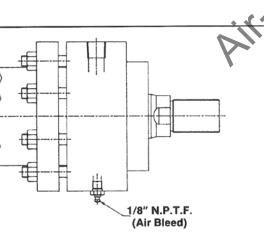


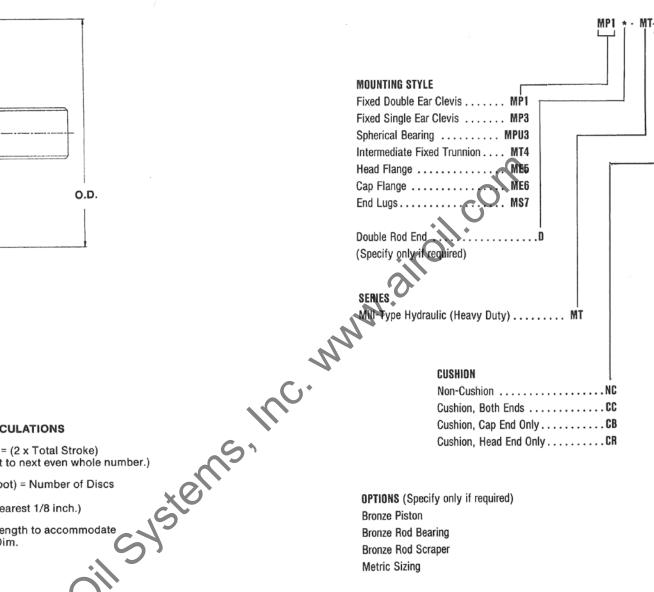
BORE	MM Rod Dia.	0.D.	BF	BORE	MM Rod DIA.	<b>0</b> .D.	BF	BOŘE	MM Rod Dia.	0.D.	BF
2.00	1.00 1.38	4.75 5.25	1.25 1.38	7.00	2.50 3.00	10.00 10.00	3.06 2.81	10.00	3.50 4.00	12.00 12.00	3.56 3.25
3.00	1.38 1.75 2.00	5.25 5.50 6.00	1.38 1.31 1.31		3.50 4.00 4.50 5.00	10.00 10.50 11.00 11.00	2.56 2.50 2.50 2.38		4.50 5.00 5.50 7.00	12.00 12.00 12.00 13.25	3.00 2.88 2.50 2.50
4.00	1.75 2.00 2.50	6.00 6.00 6.50	1.56 1.31 1.31	8.00	3.00 3.50	11.00 11.00 11.00	3.31 3.06 2.75	12.00	4.00 4.50 5.00	12.00 12.00 12.00	3.25 3.00 2.88
5.00	2.00 2.50 3.00	7.00 7.00 7.00	1.81 1.56 1.31		4.00 4.50 5.00 5.50	11.00 11.25 11.75	2.50 2.50 2.50		5.50 7.00	12.00 13.25	2.50 2.50
6.00	3.50 2.50	7.50	1.31 2.56	9.00	3.50 4.00	11.00 11.00	3.06 2.75	14.00	5.50 7.00 8.00	14.25 14.25 14.25	3.62 3.00 2.50
	3.00 3.50 4.00	9.00 9.00 10.50	2.31 2.06 2.50		4.50 5.00 5.50 6.00	11.00 11.25 11.75 11.75	2.50 2.50 2.50 2.25	16.00	5.50 7.00 8.00	14.25 14.25 14.25	3.62 3.00 ·2.50

### **ROD BOOT CALCULATIONS**

Number of Discs = (2 x Total Stroke) + BF (Raise result to next even whole number.)

CC (Length of Boot) = Number of Discs

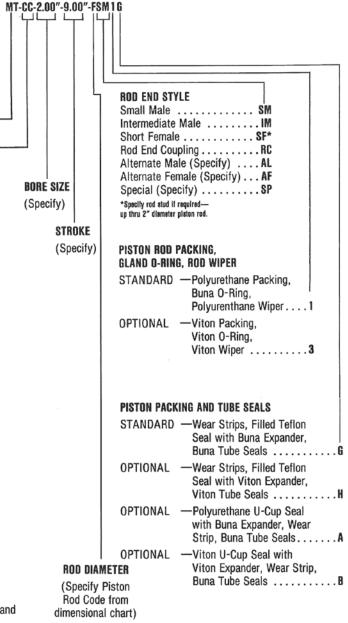

x .050 + 1.50. (Raise result to nearest 1/8 inch.)


Additional Rod Length to accommodate Boot = CC - .75 Dim.

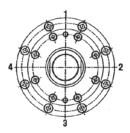
**Air Bleeds** 

Air bleeds provide a means to remove all trapped air from hydraulic systems.

NOTE: Specify port position for bleed.







When ordering a stop tube, specify actual (working) stroke and nominal stroke. State length of stop tube.

NPTF ports will be furnished as standard unless SAE straight thread ports are specified.

# **HOW TO ORDER**



NOTE: Cushion needles furnished with viton seals.



Port location: if other than position 1, must be specified. Mounting accessories must be specified if required.



## Series RT Hydraulic **Rotating Cylinders**

■ Continuous 500 RPM Capability ■ 1,500 PSI Pressure Rating ■ Flush and Flange Mountings Exclusive Coupling Sealing System ■ Nitrotec-Hardened Coupling Housing and Stem ■ 4.5" – 16.00" Standard Bore Sizes

Series RT Hydraulic Rotating Cylinders

# **SERIES RT HYDRAULIC ROTATING CYLINDERS**

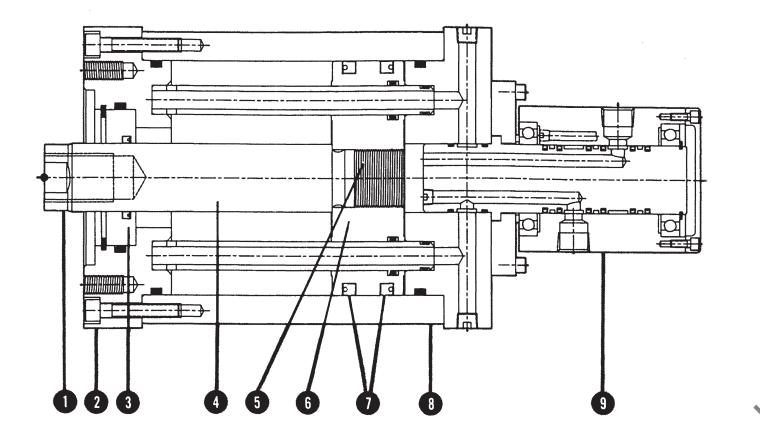
## **Series RT Heavy-Duty** Hydraulic **Rotating Cylinders**

Hanna's rugged, heavy-duty hydraulic rotating cylinders provide optimum performance wherever rotation and linear actuation interface. Applications include recoilers, uncoilers, tension reels, transfer line spindles, and power chucking on machine tools.

The coupling is supported by two anti-friction bearings, enabling the cylinder to maintain 500 RPM. Mirrorfinished, Nitrotec-treated coupling housing and Nitrotec-treated stem provide extra-hardened surfaces for tonger seal life, and corrosion protection with high water based fluids.

In addition to the axial support and stability of the coupling, the large diameter permits the use of either a probe indicator to actuate travel limit devices; or Hanna's optional Electronic Feedback device for the ultimate in safety and product yield. The design latitude thus offered expands the inherent capabilities of Series RT rotating cylinders.

Available flush or flange mounted, Hanna's Series RT cylinders offer hydraulic p.s.i. ratings up to 1500. Standard bore sizes are 4.50" through 16.00". Hanna can also meet special requirements for larger bore sizes, higher RPM or greater pressures. Please consult the factory.


## HYDRAULIC PRESSURE AND RPM LIMITS

BORE	20 GPM C	OUPLING	45 GPM C	OUPLIN
SIZE	P.S.I.	R.P.M.	P.S.I.	R.P.M
4.50	1500	500	_	_
6.00	1500	500	_	_
8.00	1500	500	1500	350
10.00	1500	500	1500	350
12.00	1500	500	1500	350
14.00	1000	500	1000	350
16.00	1000	500	1000	350

## **CONTENTS**

How to Order	.232
Series RT Cylinder Features	.222
Series RT Coupling Features	.223
MF3 Flange Mounted Cylinder Dimensions	224
MR2 Flush Mounted Cylinder Dimensions	.225
Options	.226
Tell-Tale Sensor	.227
Pressure, Force and Volume Data	.228
Installation and Maintenance Data, Fastener Torques	229
Parts List	.230
Cylinder Weights	.230
Seal Kits	.231





## Series RT Cylinder Features

### 1. Piston Rod End

Integral thread construction, precision-machined for close concentricity.

### 2. Heads

Steel heads are precision-machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

## 3. Rod Bearing Cartridge

Tapped for quick and easy removal.

### 4. Piston Rod

Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failures. All rod sizes are hard chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to an 8-micro-inch finish.

### 5. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.

6. Piston One-piece piston is made of high impact ductile iron, threaded to the piston rod.

## 7. Piston Sealing System

Self-regulating, wear-compensating, pressure-energized polyurethane seal assures zero by-pass. For higher temperature service, or for use with fire-resistant or high water-based fluids, Viton seals are an available option.

## 8. Tubing

Steel tubing is precision-honed to a 16 micro-inch finish for close tolerance between piston seal and tube wall, thus extending seal life.

## 9. Coupling

Series RT standard 20 GPM coupling is rated at 500 RPM. Optional 45 GPM coupling with a 350 RPM rating is available for cylinders with 8.00" and larger bore sizes. Both couplings bolt on, and are easily removed from the outside.



### **1. Nitrotec-Treated Coupling Housing**

Nitrotec treatment of Series RT coupling housings provides specific characteristics that enhance cylinder performance and assure long service life. An advanced heat treating method, the Nitrotec process converts the first few thousands of an inch of the housing's interior surface depth to an iron nitride, non-metallic layer, which has a hardness of approximately 60 Rc. In the process, the surface also becomes microporous.

This extremely hard microporous surface laver enables the coupling housing to exhibit three important engineering characteristics:

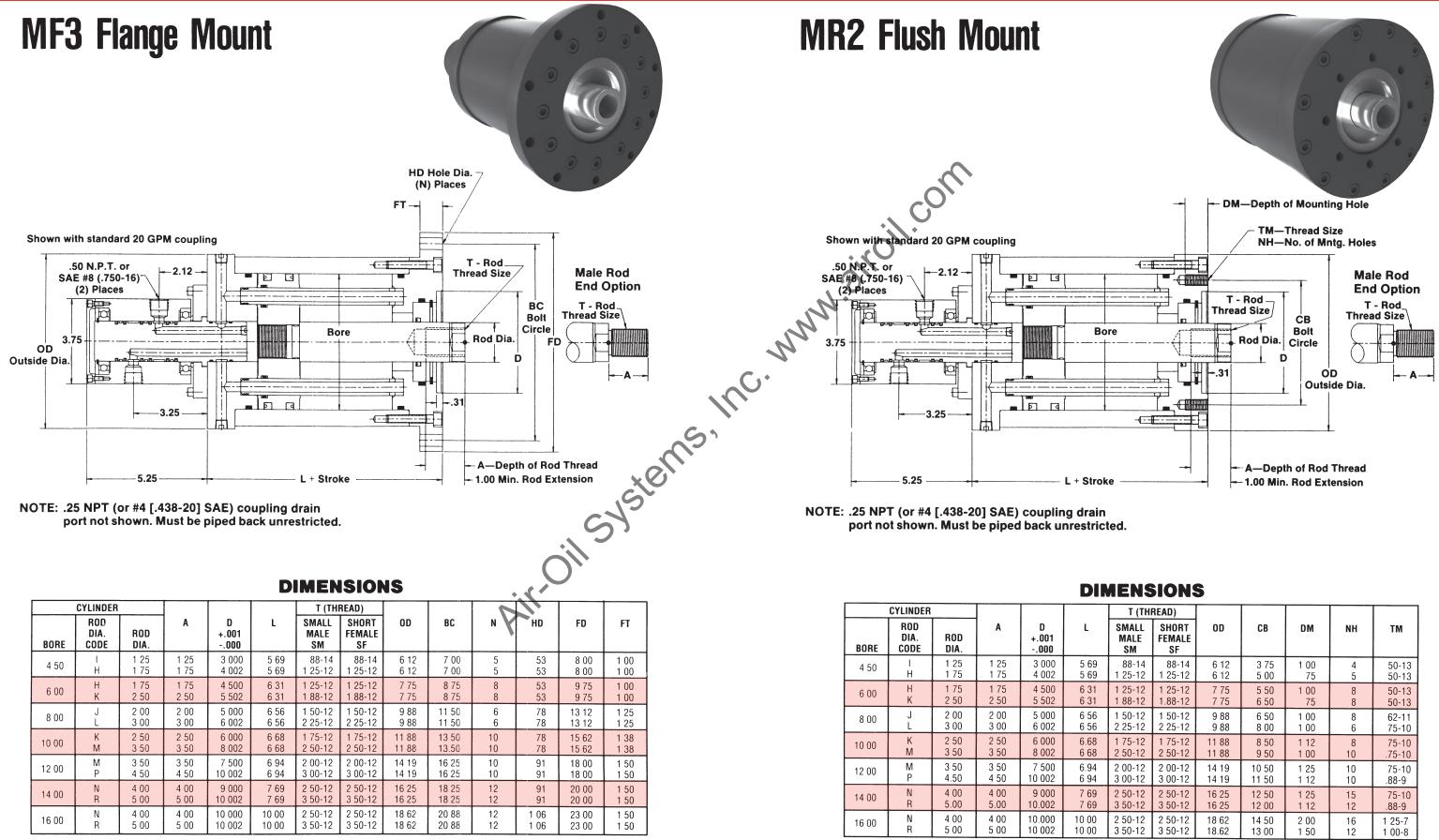
- (1) Wear resistance superior to conventional heat treatment.
- Oil retention for operating lubricity comparable to (2) non-ferrous sintered bearings.
- Excellent corrosion resistance. (3)

Prior to the Nitrotec treatment, the interior surface layer is precision honed for exacting size control. The combination of the Nitrotec process and the precision honing provides the optimum surface for extended seal life, and corrosion resistance when high water based fluids are used.

## Series RT Hydraulic Rotating Cylinders

### 2. Nitrotec-Treated Coupling Stem

As is the case with the housing, the coupling stem is also hardened via the Nitrotec process, assuring long life and maximum corrosion protection.


### **3. Dual Bearing Coupling Construction**

Each end of the coupling housing is supported on the stem by a permanently-lubricated, anti-friction, factory-sealed bearing. The dual bearing construction makes the entire unit extra rugged, assuring rigidity and stability under the most difficult operating conditions. This rigidity and stability further extend seal life.

### 4. Exclusive Coupling Sealing System

Hanna's exclusive mechanically-energized, carbon-graphite filled Teflon coupling seals provide maximum sealing efficiency. Engineered specifically for high RPM applications, they minimize friction, thereby eliminating the heat build-up that causes excessive wear in a rotating cylinder coupling. The result: long service life! The seals are compatible with most all hydraulic fluids, including fire resistant and high water based fluids.

Series RT Hydraulic Rotating Cylinders



## Series RT Hydraulic Rotating Cylinders

	T (TH	READ)					
	SMALL MALE SM	SHORT Female Sf	OD	CB	DM	NH	тм
69	88-14	88-14	6 12	3 75	1 00	4	50-13
69	1 25-12	1 25-12	6 12	5 00	75	5	50-13
81	1 25-12	1 25-12	7 75	5 50	1 00	8	50-13
81	1 88-12	1.88-12	7 75	6 50	75	8	50-13
56	1 50-12	1 50-12	9 88	6 50	1 00	8	62-11
56	2 25-12	2 25-12	9 88	8 00	1 00	6	75-10
58	1 75-12	1 75-12	11 88	8 50	1 12	8	75-10
58	2 50-12	2 50-12	11 88	9 50	1 00	10	.75-10
)4	2 00-12	2 00-12	14 19	10 50	1 25	10	75-10
)4	3 00-12	3 00-12	14 19	11 50	1 12	10	.88-9
59	2 50-12	2 50-12	16 25	12 50	1 25	15	75-10
59	3 50-12	3 50-12	16 25	12 00	1 12	12	.88-9
)0	2 50-12	2 50-12	18 62	14 50	2 00	16	1 25-7
)0	3 50-12	3 50-12	18.62	13 00	1 50	12	1 00-8

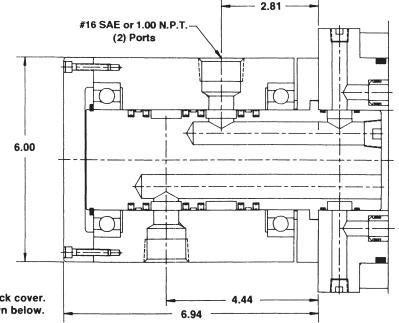
**OPTIONS** 

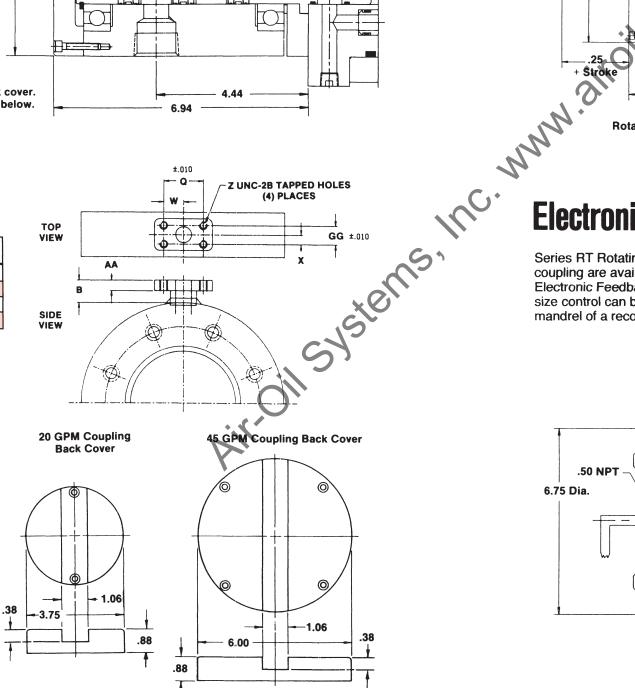
# **TELL-TALE SENSOR**

# **45 GPM Coupling**

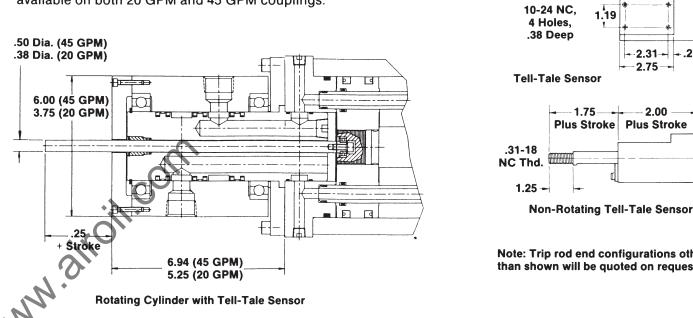
Hanna offers a 45 GPM coupling as an option for Series RT rotating cylinders with 8.00" and larger bore sizes.

The unit has a 45 GPM flow rate at 15 feet per second velocity, and 350 RPM. Maximum hydraulic pressure rating is 1500 P.S.I. Higher pressures and RPM are available as specials. Please consult the factory. Tell-tale sensor and Electronic Feedback device options are also available. See Page 227.


> Shown with standard back cover. Slotted back cover shown below.

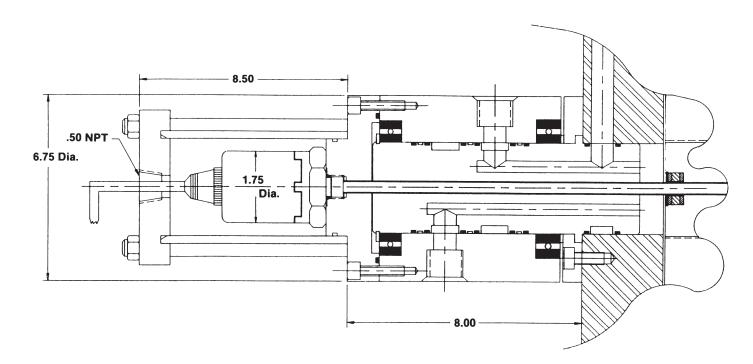

# **SAE 4-Bolt Flange Ports**

COUPLING SIZE	PORT DIA.	GG	X	Q	w	AA	Z	В
20	50	69	34	1 50	75	50	312-18	1 25
GPM	75	88	44	1 88	94	50	375-16	1 06
45	1.00	1 03	52	2 06	1 03	56	375-16	1 25
GPM	1 25	1 19	59	2 31	1 16	62	438-14	1 4 4


# **Slotted Coupling Back Covers**

Both 20 GPM and 45 GPM couplings are available with a slotted back plate to accommodate a stabilizer bar.






This mechanical position indicator is an option available on both 20 GPM and 45 GPM couplings.



# **Electronic Feedback Device**

Series RT Rotating Cylinders with the 45 GPM coupling are available equipped with Hanna's Electronic Feedback device. With this unit, precise size control can be maintained on the mandrel of a recoiling or uncoiling machine,



Note: Trip rod end configurations other than shown will be quoted on request.

Switch Bracket Mtg. Holes



thus providing an additional safety factor, as well as increased product yield. The Electronic Feedback device provides positional accuracy of ±001 in digital systems; analog responses on positions less than .010 are common.

# PRESSURE, FORCE AND VOLUME DATA

# **INSTALLATION AND MAINTENANCE DATA**

## **CYLINDER THRUST FORCE**

	Cylinder T	hrust Ford	e in Poun	ds for Vari	ous Line	Pressures			nption Per In in One Direc	
Cylinder	Piston		Pressures of	Operating N	ledium—Air	or Hydraulio		Oil*	Pressure Air	Free Air
Bore Inches	Area Sq In	50 PSI	80 PSI	100 PSI	250 PSI	500 PSI	1,000 PSI	Gallons Displaced	Cubic Ft Displaced	Cubic Ft at 80 PSI
4 50	15 904	795	1,272	1,590	3,976	7,952	15,904	0688	0092	0593
6 00	28 274	1,414	2,262	2,827	7,071	14,137	28,274	1224	0164	1056
8 00	50 265	2,513	4,021	5,027	12,566	25,133	50,265	2176	0291	1873
10 00	78 540	3,927	6,283	7,854	19,635	39,270	78,540	3400	0455	2928
12 00	113 100	5,655	9,048	11,310	28,275	56,550	113,100	4896	0656	4226
14 00	153 940	7,697	12,315	15,394	38,485	76,970	153,940	6664	0891	5740
16 00	201 060	10,053	16,085	20,106	50,265	100,530	201,060	8704	1163	7492

*GPM = gallons per inch times inches per minute

## **ROD DIAMETER THRUST FORCE**

Ro	od Diamet	er Thrust f	Consumption Per Inch of Stroke in One Direction							
Piston Rod Bore Inches	Piston Area Sq. In.	50 PSI	Pressures of 80 PSI	<b>Operating N</b> 100 PSI	<b>ledium—Air</b> 250 PSI	or Hydraulic 500 PSI	1,000 PSI	<b>Oil*</b> Gallons Displaced	Pressure Air Cubic Ft Displaced	Free Air Cubic Ft at 80 PSI
1.25	1.227	61	98	122	306	610	1,227	0053	0007	0043
1.75	2 405	120	192	241	601	1,203	2,405	0104	0014	.0090
2 00	3 1 4 2	157	251	314	786	1,571	3,142	0136	0019	0122
2 50	4 909	245	392	491	1,225	2,450	4,900	0213	0021	0183
3.00	7,069	353	566	707	1,767	3,535	7,069	0306	0041	.0264
3 50	9.621	481	770	962	2,405	4,811	9,621	.0417	.0056	0358
4.00	12.566	628	1,005	1,257	3,142	6,283	12,566	0544	0073	0468
4 25	14 186	709	1,134	1,418	3,546	7.093	14,186	.0614	0082	0508
4 50	15 904	795	1,272	1,590	3,976	7,952	15,904	0688	0092	0593
5.00	19.635	982	1,571	1,964	4,909	9.818	19,635	0850	0114	0732
5 50	23 758	1,188	1,901	2.376	5,940	11,879	23,758	.1028	0137	0861

## **OIL FLOW**

S = Stan X = Extra	dard weight a strong.	pipe.			Oil Flow i Friction	Pressur	Ċ					
XX = Dou	uble extra st	trong.		Per Square Inch Per Foot Length of Pipe								
Butt Welded Steel Clean Pipe					city = Per Sec		Velocity = 20 Ft Per Sec		city = Per Sec		valent Leng	
Pipe Size	Bursting Pressure PSI	Internal Diameter Inches	Internal Area Sq. In.	Gals Per Minute	Pressure Drop in PSI	Gals Per Minute	Pressure Drop in PSI	Gals Per Minute	Pressure Drop in PSI		ght Pipe in /arious Fitti Elbow	
3/8S	10.754	493	191	5 98	1.19	11 96	3 71	17 94	7 31	3/8	1.3	3.0
1/2S	10,784	.622	.304	9.48	82	18.96	2 75	28 44	5.36	1/2	15	33
3/4X	11,728	742	.433	13.52	.69	27.04	2 15	40 56	4.15			
3/4S	8,608	824	533	16 78	59	33.56	1.80	50 34	3 44	3/4	22	4.6
1-1/4XX	18,408	896	.630	19.66	54	39.32	1 64	58 98	3 13			
1X	10,888	957	719	22 42	49	44.84	1 54	67.26	2.93			
1S	8,088	1.049	864	27 18	.43	54 36	1 40	81 54	2.67	1	2.8	57
1-1/2XX	16,840	1 100	.950	29.62	41	59.24	1 34	88 86	2 44			
1-1/4X	9,200	1 278	1 283	40.30	33	80 60	1 07	120 90	2.00			
1-1/4S	6,744	1 380	1.495	46 96	31	93 92	91	140 88	1 76	1-1/4	37	78

 $(P \lambda)$  = Pressure drops have been derived from the rational formula —  $P \lambda = \frac{.323 \int SLV^2}{d}$ 

(G P M) = Gallons per minute have been derived from the rational formula — G = 431  $\sqrt{\frac{P \lambda d}{f S L}}$ 

(f) = Friction factors from "Piping Handbook;" 4th Ed , Fig. 15a  $\frac{dvs}{7}$ 

### Series RT Hydraulic Rotating Cylinders

## STORAGE:

Cylinders in storage should always be fully protected against the elements or other adverse conditions.

## INSTALLATION:

The pipe ports of cylinders are sealed with plastic plugs The plugs protect the precision internal parts by sealing out damaging dirt and grit. Do not remove port seals until ready to connect piping. To protect cylinders, clean all pipes and pipe fittings of dirt, scale, and thread chips. A filter is recommended to keep the operating fluid free of foreign matter

Accurate mounting and alignment are essential to proper cylinder performance By eliminating side loading, packing and bearing life will be increased

## MAINTENANCE:

Precision construction of Hanna cylinders minimizes wear as a maintenance problem. Parts which may need replacement in the course of normal use are the packings for the piston and piston rod, guide pin seals and coupling seals.

To replace rod seal, remove front head from tube. Remove gland retaining ring and push the gland out from tube end. Remove old rod seal and gland O-ring, and carefully clean both grooves. To reassemble, slip new rod packing into groove, exercising care not to nick the lips of the packing Install gland and retaining ring, then replace front head and retorque per the Fastener **Torque** table as shown on this page

## To replace piston seals and guide pin O-rings,

remove front head and piston rod assembly. Remove old packings and carefully clean grooves. Install new seals Place guide pins into back head. Carefully replace ram assembly into tube, lining up guide pins. Exercise care not to damage packing lips. Replace front head, and retorgue per the Fastener Torgue table

## **FASTENER TORQUES**

BORE		ST ITEM #30 Screw		IST ITEM #9 ER SCREW	PARTS LIST ITEM #2 Coupling Cap Screw		
	SIZE	TORQUE	SIZE	TORQUE	SIZE	TORQUE	
4 50	50-13	80 ft -lbs	38-16	34 ft -lbs	#10-24	4 ft -lbs	
6 00	50-13	80	38-16	34	#10-24	4	
8 00	50-13	80	38-16	34	#10-24	4	
10 00	62-11	150	38-16	34	#10-24	4	
12 00	62-11	150	38-16	34	#10-24	4	
14 00	62-11	150	38-16	34	#10-24	4	
16 00	62-11	150	38-16	34	#10-24	4	

To replace coupling seals, remove coupling cap and bearing retaining ring. Remove coupling housing, then remove retainer cap screws. Slide coupling shaft out of back head, and remove old seals Clean all grooves and replace shaft O-rings. Then replace shaft into back head, and secure with retainer and cap screws Retorque per Fastener Torque table.

For cylinders with old style seals, replace O-rings and back-up washers, then replace housing, retaining ring and coupling cap. Torgue per Fastener Torgue table.

For cylinders with new style seals (Roto Seals), slide (1) O-ring into O-ring groove closest to back head, then pre-form the seal by stretching it slightly. Position seal over O-ring, and with your fingers, resize the seal into the groove. For final re-sizing, slide coupling housing over the seal, using care not to nick the seal. Repeat this procedure for all the remaining seals. Finally, replace housing and bearing retainer, coupling cap and cap screws. Retorgue per Fastener Torque table.

### **Roto-Seal Installation Tools**

Hanna offers installation tools which significantly facilitate and simplify the replacement procedure for coupling Roto-Seals. For further information, contact your Hanna distributor.



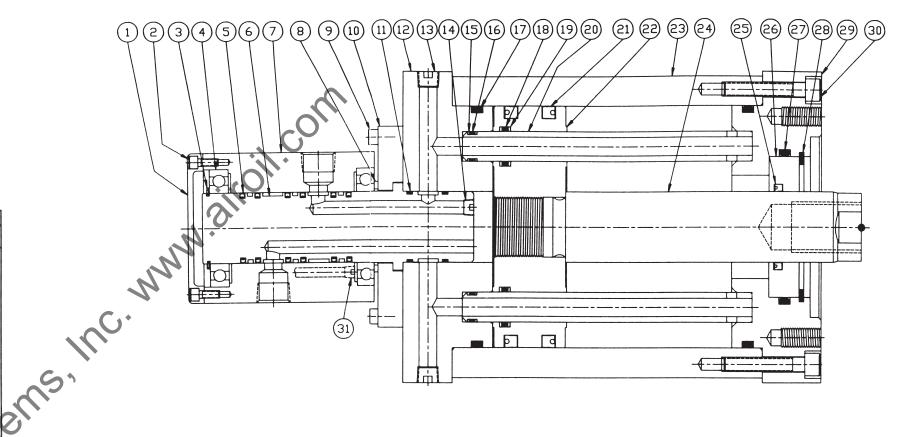
20 GPM Coupling - Part No. R1756A Part No. R1755A 45 GPM Coupling - Part No. R1801A Part No. R1800A

> Note: Replacement parts can be furnished quickly if you will indicate the serial number of the cylinder as shown on the name plate, and the part name and number, as shown on Pages 12 and 13. The cylinder illustrated is for reference purposes only, and does not represent any particular model.

> > 229

PARTS LIST

When ordering replacement parts, identify Model Number, Serial Number and Part Number as shown below.


11Coupling Cap22Coupling Cap Screw31Retaining Ring42Bearing5*6Roto Seal61Coupling Shaft71Coupling Housing81Spacer94Retainer Screw101Coupling Retainer11*2O-Ring (Shaft)121Back Head132Port Plug142Port Plug15*4Back-up Washer16*2O-Ring (Guide Pin)17*2O-Ring (Fiston Guide)19*4Back-up Washer202Guide Ring21*2Piston Packing221Piston Rod231Tube241Piston Rod25*1Rod Bearing261Rod Bearing	Part No.	No. Req'd.	Description
	No. 1 2 3 4 5* 6 7 8 9 10 11* 12 13 14 15* 16* 17* 18* 19* 20 21* 22 23 24 25* 26	Req'd. 1 2 1 2 6 1 1 2 4 2 2 4 2 2 4 2 2 4 2 2 1 1 1 1 1 1 2 1 2 4 2 2 4 2 2 4 2 2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Coupling Cap Coupling Cap Screw Retaining Ring Bearing Roto Seal Coupling Shaft Coupling Housing Spacer Retainer Screw Coupling Retainer O-Ring (Shaft) Back Head Port Plug Back-up Washer O-Ring (Guide Pin) O-Ring (Tube) O-Ring (Piston Guide) Back-up Washer Guide Ring Piston Packing Piston Tube Piston Rod Rod Packing
28 1 Retaining Ring	1 1		<b>v v</b>
29     1     Front Head       30     **     Cap Screw       31     1     Port Plug	29 30	1 **	Front Head Cap Screw

*Recommended spare parts

**As required

## **CYLINDER WEIGHTS**

		BASE WT.	WT. PER	COU	PLER	]
BORE	ROD CODE	AT ZERO STROKE	INCH OF Stroke	20 GPM	45 GPM	
4 50	1 H	46 lbs	3 85 4 20			1
6 00	H K	85	6 00 6 75			
8 00	J L	145	7 80 8 90	16 lbs.	55 lbs.	
10 00	K M	215	9 90 11 25	All Units	All Units	
12 00	M P	345	14 30 16 10	onno	<b>O</b> IIIO	
14 00	N R	460	18 75 20 80			
16 00	N R	780	28 00 31 33		×	Ø
				c Jil	SY'S	1
		1				



## **PISTON ROD KITS**

Ordering Example	
SEAL KIT H-2	

SEAL KIT H-2	
From L	From
piston	rod packing
rod code	code

Order by Piston Rod Packing Code and Rod Diameter Code from nameplate as outlined:

- 2 Standard Polyurethane Packing with Buna-N O-Ring Expander, Buna-N O-Ring
- 3 Optional Viton Packing, Viton O-Ring

**B** — Optional Viton Packings with Teflon Back-Ups, Viton Tube Seals

## **SEAL KITS**

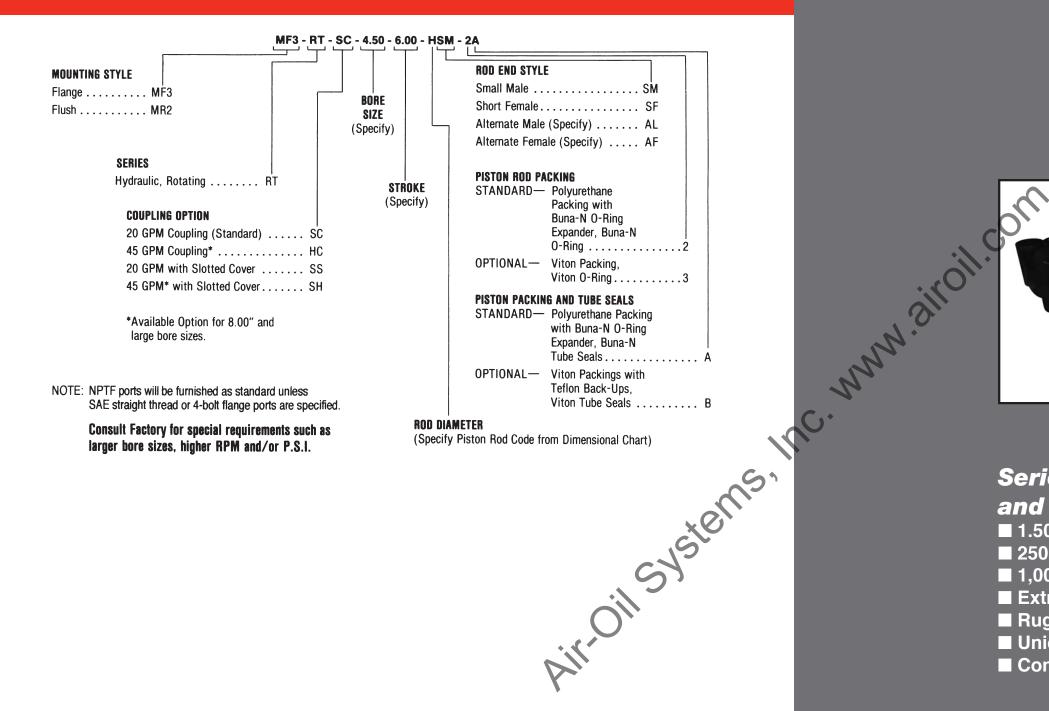
## **PISTON PACKING KITS**

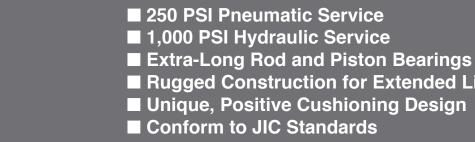
Ordering Example SEAL KIT **A-4.50** From _____ Bore Size

packing code

piston

Order by Piston Packing Code and Bore Size from nameplate as outlined:


A — Standard Polyurethane Packings with Buna-N O-Ring Expander, Buna-N Tube Seals


## **COUPLING SEAL KITS**

Includes 6 carbon-graphite filled Teflon Roto Rings with 6 Viton Expander O-Rings and 2 Viton O-Rings.

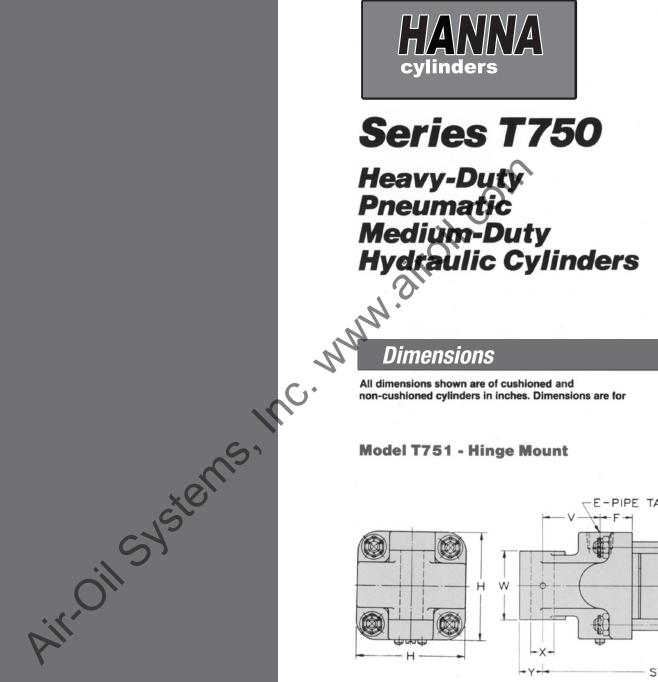
Specify 20 or 45 GPM Coupling.

## **HOW TO ORDER**

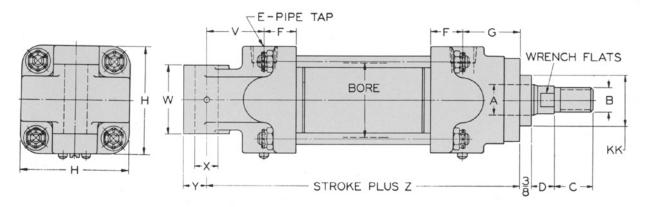







HANNA

## **Series T750 Pneumatic** and Hydraulic Cylinders ■ 1.50" – 4.00" Bores


Rugged Construction for Extended Life

Series T750 Pneumatic and Hydraulic Cylinders

## **SERIES T750 PNEUMATIC AND HYDRAULIC CYLINDERS**

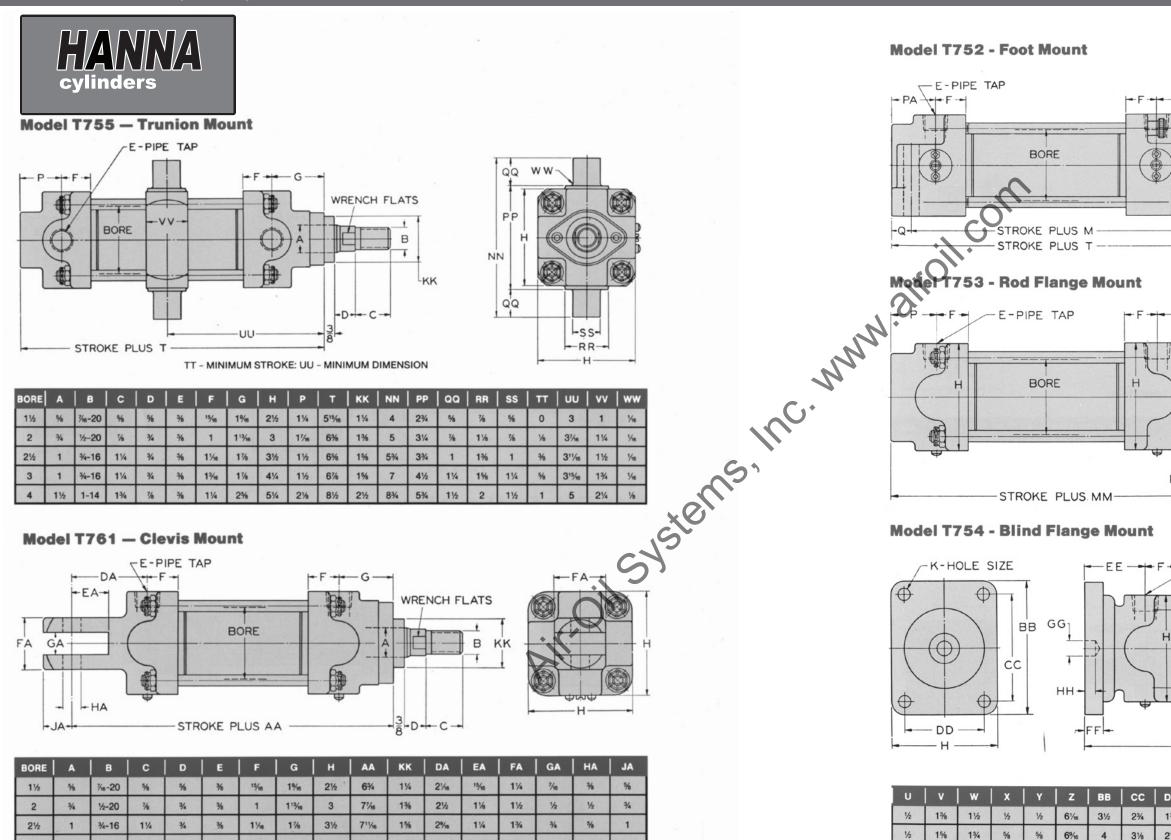


### Model T751 - Hinge Mount



BORE	A	в	c	D	E	F	G	н	J	к	L	м	N	P	Q	R	s	Т	
1½	5%8	1∕16-20	5%	5%8	3⁄8	15/16	1%	2½	11/4	11/32	1¾	4%	13/32	11⁄4	5%8	7/16	1¾	5 ¹⁵ /16	
2	3/4	1⁄2-20	7/8	3⁄4	*/8	1	113/16	3	1½	13/32	2	43/4	13/32	11/16	5%8	1/2	23/16	6%	
21/2	1	3⁄4-16	11⁄4	3⁄4	3⁄8 ·	1 1/16	1%	3½	13⁄4	13/32	21/2	4%	17/32	1½	11/16	1/2	21/2	6%	
3	1	3⁄4-16	1¼	3/4	3%8	1 3/16	1%	41⁄4	21/8	17/32	3	51/8	17/32	1½	11/16	1/2	215/16	6%	
4	1½	1-14	1¾	7/8	3%8	11⁄4	2%	51⁄4	2%	21/32	3¾	71⁄4	21/32	- 21/8	7/8	5%8	3%	91/2	

Series T750 Pneumatic and Hydraulic Cylinders


Hanna's Series T750 cylinders are designed for heavyduty pneumatic service up to 250 p.s.i., or mediumduty hydraulic service to 1000 p.s.i. Offered in 1.50" through 4.00" bore sizes, they are available in six mounting styles. The units conform to J.I.C. standards.

Featuring rugged construction and extra-long rod and piston bearings, Series T750 cylinders are engineered to provide extended life. Unique cushion design assures positive cushioning over the entire cushion stroke, with immediate full speed on return stroke.

Ideal for a wide range of applications, Series T750 cylinders have been used extensively in packaging machinery and conveying equipment.

zero stroke. Rod ends shown will be furnished unless otherwise specified. Alternate rod ends are available.

Series T750 Pneumatic and Hydraulic Cylinders



21/4

21/2

3

3/4

7/8

3/4

7/8

1 1/8

1%

25%

9/16

9/16

3/4

4%

5

8

7

71/4

9

31/2

4

61/2

3/4

5%

7/8

1

1%

41/4

51/4

13/18

11/4

1%

2%

713/16

10%

1%

21/2

21/16

3¾

11⁄4

1%

13⁄4

23/4

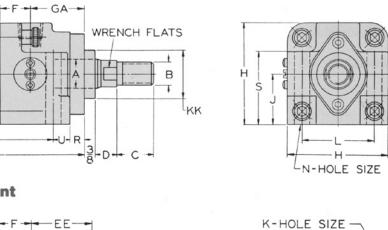
3

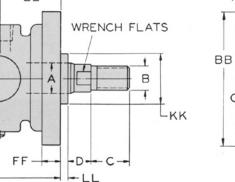
4

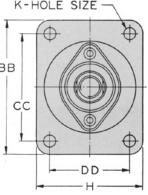
3⁄4-16

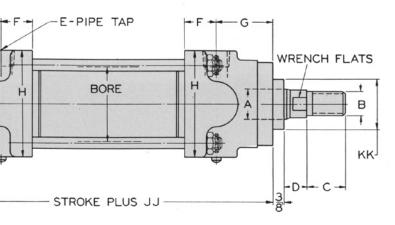
1-14

11/4


134


3/4


3%


1

11/2

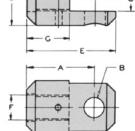




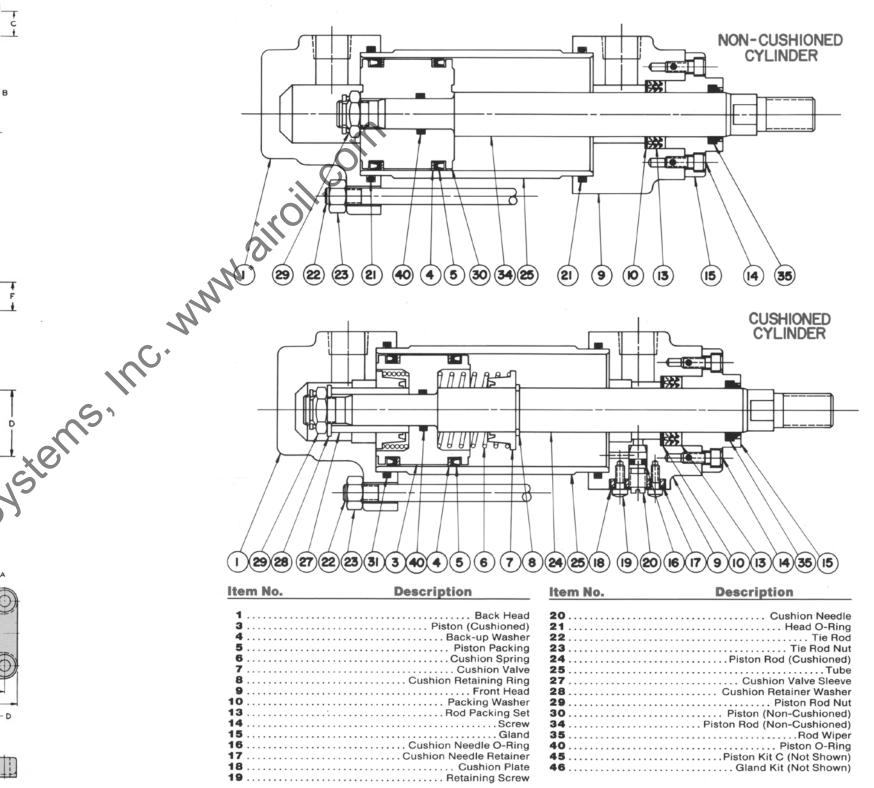




DD	EE	FF	GG	нн	JJ	кк		мм	PA	GA
1¾	111/16	7/16	5/16	3%8	63%	11⁄4	1/4	61/16	1¼	1%
21/8	115/16	1/2	3⁄8	3%8	61%8	1%	1/4	6½	11/16	113/16
25%	2	5%8	1/2	3%8	71/8	1%	1/4	6¾	1½	1%
31⁄4	2	5%8	1/2	3%8	7%	1%	1/4	7	1½	1%
3¾	2¾	1	1/2	1/2	91/8	2½	1/4	8%	2%	31/8


## **OPTIONS**

## **Rod Clevis**


The rod clevis attaches to the piston rod of Series T750 cylinders. Clevis pins are also available.

BORE	ITEM NO.	A	в	c	D	E	F	G
1½	V15	1%	3/8	7/16	1	1½	⅔₀-20	5%8
2	V20	1½	1/2	1/2	11⁄4	2	1/2-20	7/8
21/2	V25	2	5%8	3/4	1%	2%	3⁄4-16	1¼
3	V30	2	5%8	3/4	1%	2%	3⁄4-16	1¼
4	V40	3	7/8	1	21/2	4	1-14	1¾





When ordering, please give Cylinder Serial Number, Parts List Page Number and Date, and Part Number. If Serial



### **Rod Eye**

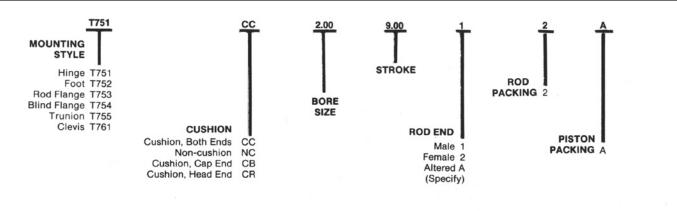
The rod eye attaches to the piston rod of Series T750 cylinders. May be used with or without mounting bracket.

BORE	ITEM NO.	A	в	c	D	E	F
1½	Y15	1	1/2	1½	1	1/8	₹/18-20
2	Y20	1¼	5%8	1¾	1¼	1/8	1/2-20
21/2	Y25	1¾	3/4	21/4	1½	3/18	3⁄4-16
3	Y30	1¾	7/8	21/2	1¾	1/4	3⁄4-16
4	Y40	2%	1	3	2	5/16	1-14

### **Mounting Bracket**

The mounting bracket fits the back head of the hinge mount cylinder. It may also be used on the rod end of any cylinder equipped with a rod eye. Comes complete with pin.

BORE	ITEM NO.	A	в	c	D	E	F	G	н
1½	B15	11/8	1/2	1½	1/2	1/2	15/16	1¾	21/2
2	B20	1%	5%8	1¾	5%8	5%8	3%8	21/8	3
21/2	B25	1%	3⁄4	21⁄4	3/4	3/4	7/16	21/2	3½
3	B30	1%	7/8	21/2	7∕8	7/8	1/2	2%	4
4	B40	21/4	1	3	1	1	5%8	31/2	5


H	F BOLT DIA
2½	
3	B D
3½	- (
4	
5	

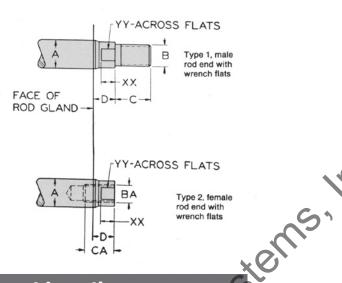
# **PARTS LIST**

Number is not available, please indicate Model Number, Bore, Stroke and Rod Diameter.

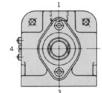
237

## **HOW TO ORDER**

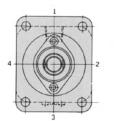



## Rod End Dimensions

The two piston rod ends illustrated and dimensioned are standard. Rod End type 1 will be furnished on all cylinders unless otherwise specified. Type 2 is optional at no extra charge.


Special rod ends and rod extensions can be made to suit your individual requirements. Wrench flats as illustrated are standard, and facilitate mounting of the cylinder.

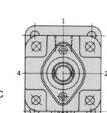
BORE	A	в	с	D	BA	CA	xx	YY
1½	5⁄8	∛16-20	5%8	5%8	3%-24	1/2	3%	1/2
2	3/4	1⁄2-20	7∕8	3⁄4	₹/16-20	3/4	1/2	9/16
2½	1	3⁄4-16	1¼	3/4	%-18	1	1/2	13/18
3	1	34-16	1¼	3/4	%-18	1	1/2	13/16
4	1½	1-14	1¾	7/8	1-14	1½	5%8	11/4


STANDARD LOCATION PIPE PORT AT 1 CUSHION NEEDLE AT 3 MODEL 753 & 753CC



Pipe Port and Cushion Needle Adjustment Locations




STANDARD LOCATION PIPE PORT AT 1 CUSHION NEEDLE AT 4 MODEL 752 & 752CC

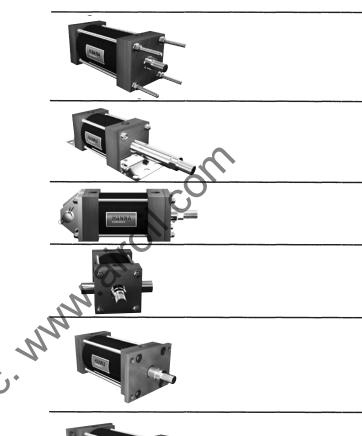




STANDARD LOCATION PIPE PORT AT 1 CUSHION NEEDLE AT 3 MODEL 751 & 751CC






NEEDLE AT 3 MODEL 755 & 755CC C. WWW. SHOIL

## **Series CA Composite Pneumatic Cylinders**

Corrosion Resistance High-Tech Duralon[®] Rod Bearing Advance-Design Rod and Piston Sealing System Heavy-Duty Piston-to-Rod Connection ■ 1.50" – 6.00" Bores 150 PSI Pressure Ratings ■ 11 N.F.P.A. Mounting Styles Lightweight, Easy to Install Optional AWWA Construction Available



## SERIES CA COMPOSITE PNEUMATIC CYLINDERS 1.50" THRU 6.00" BORES







		Description	Page N	No.
		MX0-1-2-3-	<b>4</b> Tie Rod Mounts	.242
		MS1	End Angle Mount	. 242
		MP1	Cap Fixed Clevis Mount	. 244
		MT1	Head Trunnion Mount	. 244
NC.		MF1	Head Rectangular Flange Mount	. 246
tems		MF2	Cap Rectangular Flange Mount	. 246
il SYS		MXO-D	Double Rod Mount	248
AIRON	MOUNTING ACCESSORIES Rod Clevis Rod Eye Pin Brackets	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	249 249 249
	TECHNICAL INFORMATION Stroke Limitation Data Force Data Stop Tube Data Cylinder Weights			250 250 250 251 251
	PARTS LIST	<b>A</b>		254
	Fastener Torques       How To ORDER         HOW TO ORDER       Series CA Composite Pneumatic Cylinders			



## Series CA Features and Benefits

### 1. Piston Rod End

Integral thread construction, precision-machined for close concentricity.

### 2. Duralon[®] Rod Bearing

Hanna's high-tech Duralon rod bearing is designed to perform under poorly lubricated, high load conditions. The exact combination of woven Teflon® and Dacron[®], plus the fiberglass structural shell, increases load-carrying capabilities and eliminates "cold-flow" associated with Teflon. Because Duralon bearings are non-metallic, they minimize potential galling. In addition, they are capable of sustaining much higher compressive loads than either bronze or cast iron, have an extremely low coefficient of friction, require no lubrication to the bearing surface and are impervious to corrosion.

### 3. Gland Construction

Two-piece (gland plus retainer plate) with full-face retainer design for easy maintenance should the need for bearing or seal replacement arise. Made from corrosion-resistant stainless steel.

### 4. Rod Seal

Series CA cylinders incorporate a heavy crosssection polyurethane U-cup piston rod seal, assuring zero leakage and outstanding wear resistance.

## 5. Heads

Heads are made from laminated phenolic with enhanced strength and corrosion-resistant properties. Hanna's precision machining assures accurate alignment and close concentricity between piston, tube, piston rod and rod bearing, thus prolonging cylinder service life.

### 6. Cushion Check Seals

Series CA cushion check seals are closely fitted to cushion sleeve and spear. The seals serve as both cushion seal and check valve, providing effective cushioning and fast, smooth breakaway.

### 7. Tubing

Fiberglass tubing provides the combination of high strength and corrosion resistance needed for service in harsh environments. Inside diameter of tubing has a 12 micro-inch finish. Non-metallic piston bearing contact prevents galling, and provides for extremely low coefficient of friction.

### 8. Piston Rod

All piston rod sizes are made of Series 303 stainless steel, and are hard-chrome plated for scratch and corrosion resistance. To maximize seal and bearing life, plated surface is polished to a 6-8 micro-inch finish. The rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress concentration.

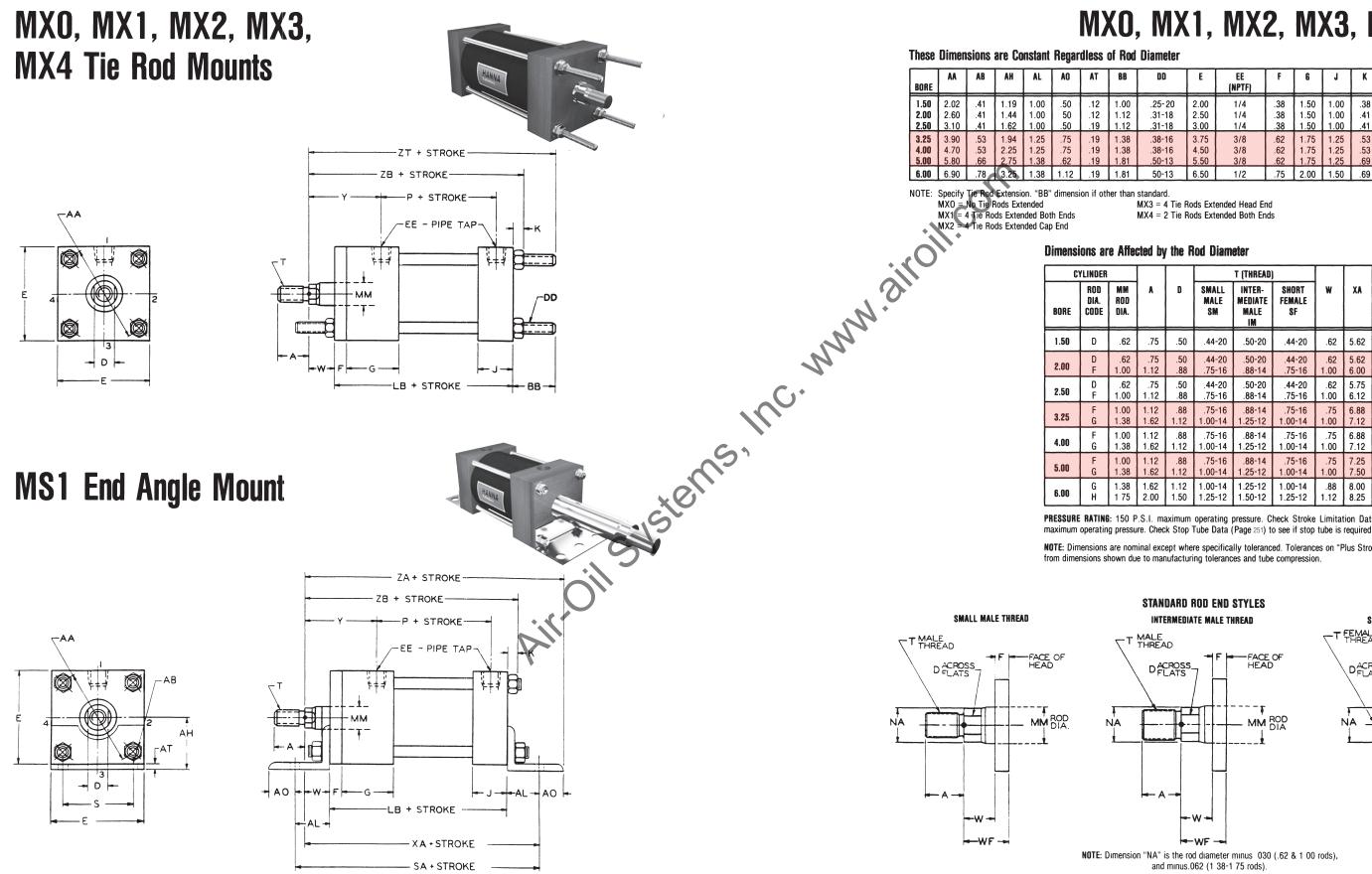
### 9. Piston-to-Rod Connection

Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.

## Series CA Composite Pneumatic Cylinders

### 10. Piston

One-piece piston is made of high-strength, noncorrosive, impact-resistant aluminum. Threaded to the piston rod, the piston is furnished with breakaway spirals on each side. For AWWA-approved water service, optional cadmium-plated piston is available.


### **11. Piston Sealing System**

Two Buna U-cups with a bronze-filled Teflon bearing strip are standard. The wear strip provides a non-metallic bearing point on the piston, assuring long life and extremely low friction. For non-lubricated service, an optional glass-filled Teflon, O-ring energized piston seal, with wear strip, is available.

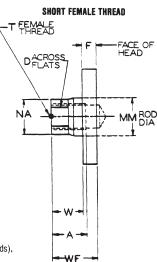
### 12. Tie Rods

Made from high-strength, corrosion-resistant Series 303 stainless steel. Tie rod nuts, washers and all other fasteners are also made of stainless steel for corrosion resistance and low maintenance.

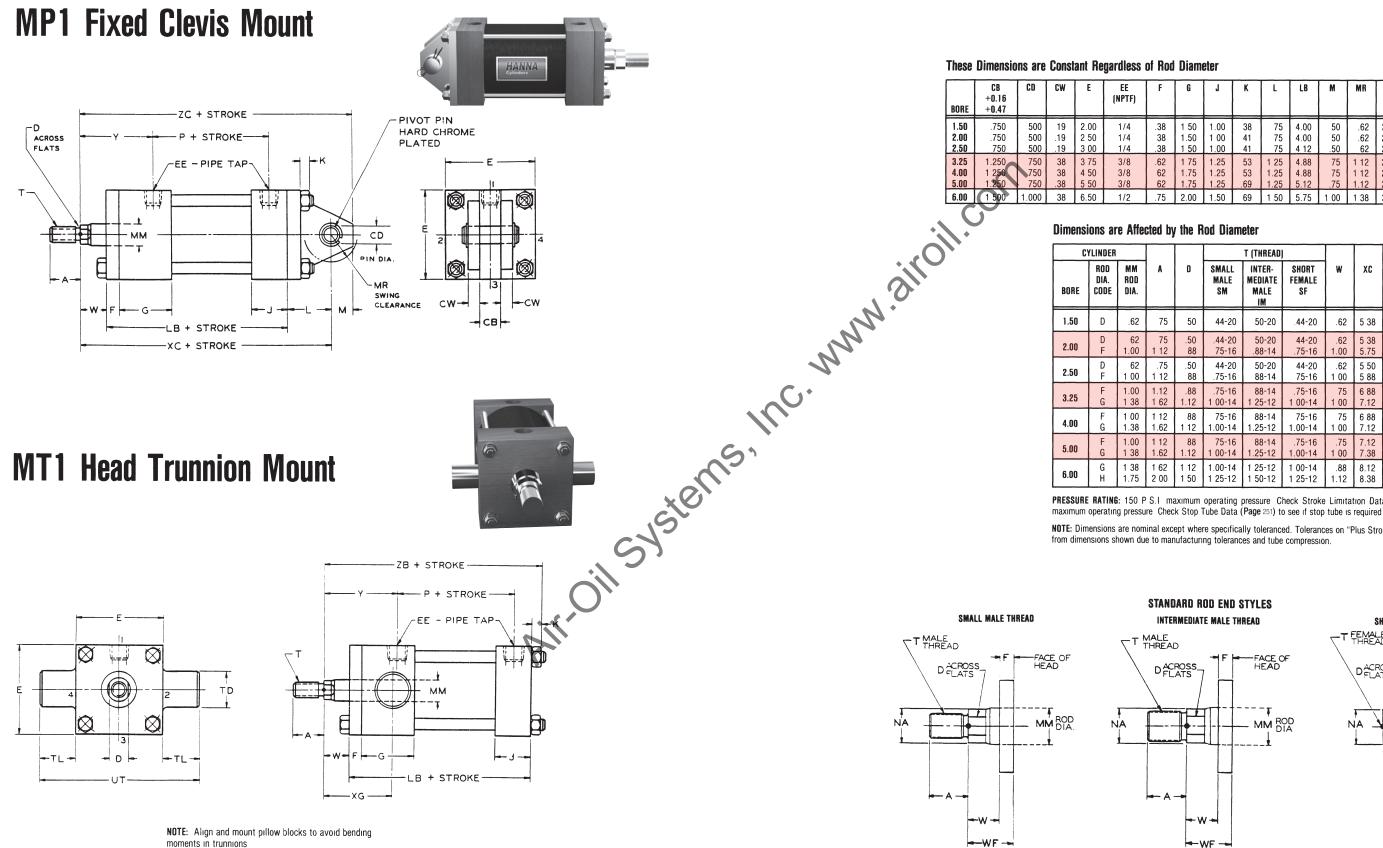
## SERIES CA 1.50" – 6.00" BORES



## Series CA Composite Pneumatic Cylinders


# MXO, MX1, MX2, MX3, MX4, MS1

DD	E	EE (NPTF)	F	6	J	K	LB	P	S	SA
.25-20	2.00	1/4	.38	1.50	1.00	.38	4.00	2.31	1.25	6.00
.31-18 .31-18	2.50 3.00	1/4 1/4	.38 .38	1.50 1.50	1.00 1.00	.41 .41	4.00 4.12	2.31 2.44	1.75 2.25	6.00 6.12
.38-16 .38-16	3.75 4.50	3/8 3/8	.62 .62	1.75 1.75	1.25 1.25	.53 .53	4.88 4.88	2.69 2.69	2.75 3.50	7.38 7.38
.50-13	5.50	3/8	.62	1.75	1.25	.69	5.12	2.03	4.25	7.88
50-13	6.50	1/2	.75	2.00	1.50	.69	5.75	3.19	5.25	8.50


			T (THREAD)							
A	D	SMALL Male Sm	INTER- MEDIATE MALE IM	SHORT Female Sf	W	XA	Ŷ	ZA	ZB	ZT
.75	.50	.44-20	.50-20	.44-20	.62	5.62	1.88	6.12	5.00	5.62
.75	.50	.44-20	.50-20	.44-20	.62	5.62	1.88	6.12	5.03	5.75
1.12	.88	.75-16	.88-14	.75-16	1.00	6.00	2.25	6.50	5.41	6.12
.75	.50	.44-20	.50-20	.44-20	.62	5.75	1.88	6.25	5.16	5.88
1.12	.88	.75-16	.88-14	.75-16	1.00	6.12	2.25	6.62	5.53	6.25
1.12	.88	.75-16	.88-14	.75-16	.75	6.88	2.38	7.62	6.16	7.00
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	7.12	2.62	7.88	6.41	7.25
1.12	.88	.75-16	.88-14	.75-16	.75	6.88	2.38	7.62	6.16	7.00
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	7.12	2.62	7.88	6.41	7.25
1.12	.88	.75-16	.88-14	.75-16	.75	7.25	2.38	7.88	6.56	7.69
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	7.50	2.62	8.12	6.81	7.94
1.62	1.12	1.00-14	1.25-12	1.00-14	.88	8.00	2.75	9.12	7.31	8.44
2.00	1.50	1.25-12	1.50-12	1.25-12	1.12	8.25	3.00	9.38	7.56	8.69

PRESSURE RATING: 150 P.S.I. maximum operating pressure. Check Stroke Limitation Data (Page 250) which may reduce

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly

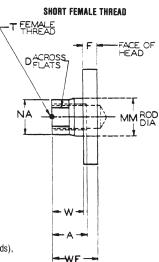


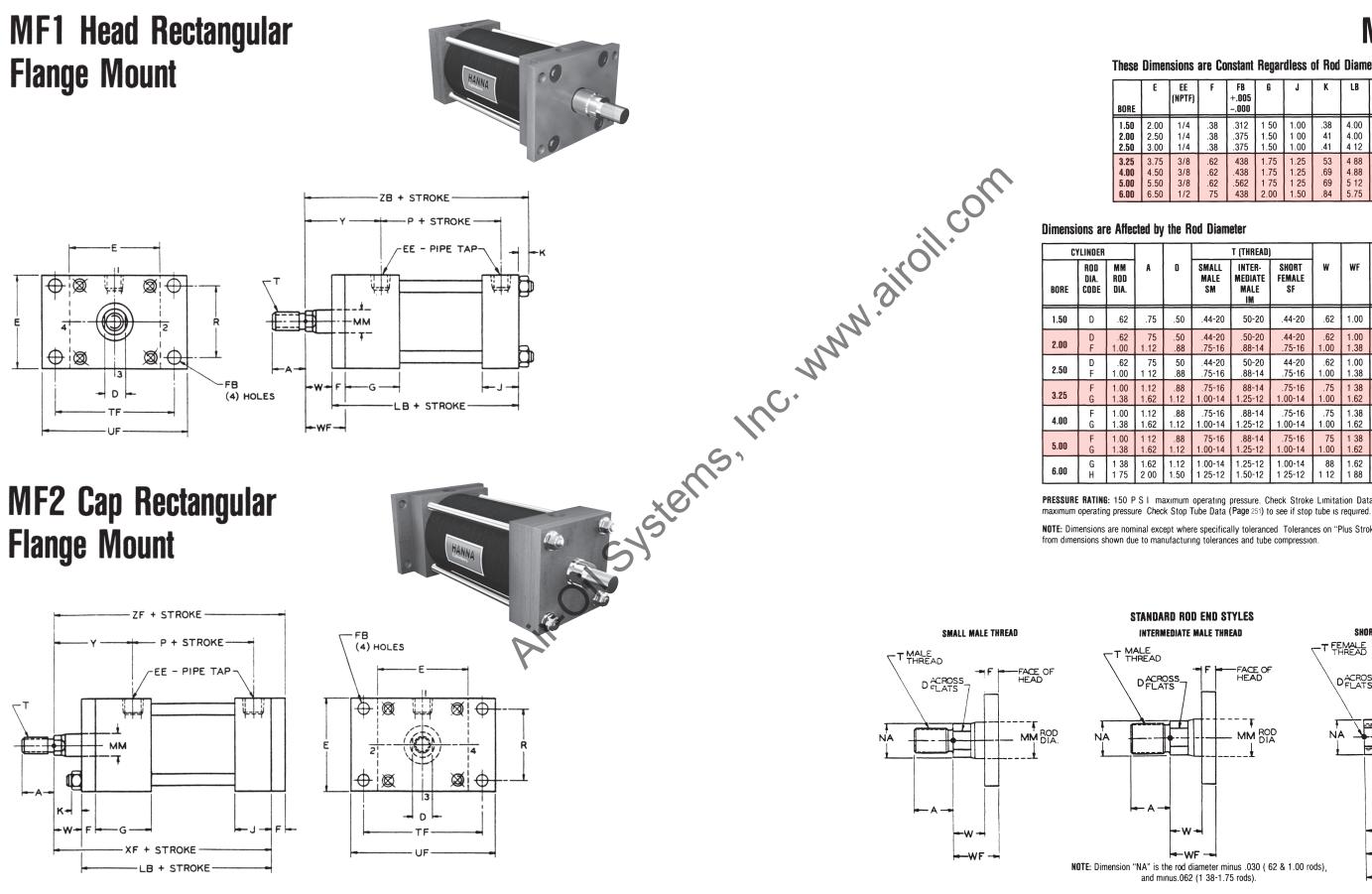




NOTE: Dimension "NA" is the rod diameter minus 030 ( 62 & 1.00 rods), and minus 062 (1 38-1 75 rods)

## Series CA Composite Pneumatic Cylinders


## **MP1, MT1**


F	G	J	ĸ	L	LB	М	MR	Р	TD +.000 002	TL	UT
.38	1 50	1.00	38	75	4.00	50	.62	2 31	1.000	1 00	4 00
38	1.50	1 00	41	75	4.00	50	.62	2.31	1.000	1.00	4 00
.38	1 50	1.00	41	75	4 12	.50	62	2 44	1.000	1 00	5.00
.62	1 75	1.25	53	1 25	4.88	75	1 12	2 69	1.000	1 00	5.75
62	1.75	1.25	53	1.25	4.88	75	1 12	2.69	1 000	1.00	6 50
62	1.75	1.25	.69	1.25	5.12	.75	1.12	2.94	1.000	1.00	7 50
.75	2.00	1.50	69	1 50	5.75	1 00	1 38	3 19	1 375	1.38	9 25

			T (THREAD							
A	D	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female Sf	w	XC	XG	Ŷ	ZB	ZC
75	50	44-20	50-20	.44-20	.62	5 38	1 75	1.88	5.00	5 88
75	.50	.44-20	50-20	44-20	.62	5 38	1 75	1.88	5.03	5.88
1 12	88	75-16	.88-14	.75-16	1.00	5.75	2 12	2 25	5.41	6 25
.75	.50	44-20	50-20	44-20	.62	5 50	1.75	1.88	5.16	6 00
1 12	88	.75-16	88-14	75-16	1 00	5 88	2 12	2 25	5.53	6.38
1.12	.88	.75-16	88-14	.75-16	75	6 88	2 25	2 38	6.16	7.62
1 62	1.12	1 00-14	1 25-12	1 00-14	1 00	7.12	2.50	2.62	6 41	7.88
1 12	88	75-16	88-14	75-16	75	6 88	2.25	2 38	6.16	7 62
1.62	1 12	1.00-14	1.25-12	1.00-14	1 00	7.12	2 50	2 62	6.41	7 88
12	88	75-16	88-14	.75-16	.75	7.12	2.25	2 38	6.56	7.88
1.62	1.12	1 00-14	1.25-12	1.00-14	1 00	7.38	2.50	2.62	6 81	8.12
1 62	1 12	1.00-14	1 25-12	1 00-14	.88	8.12	2.62	2.75	7 31	9 12
2 00	1 50	1 25-12	1 50-12	1 25-12	1.12	8.38	2 88	3.00	7.56	9 38

PRESSURE RATING: 150 P S.I maximum operating pressure Check Stroke Limitation Data (Page 250) which may reduce

NOTE: Dimensions are nominal except where specifically toleranced. Tolerances on "Plus Stroke" dimensions will vary slightly





## Series CA Composite Pneumatic Cylinders

## MF1, MF2

### These Dimensions are Constant Regardless of Rod Diameter

E	EE (NPTF)	F	FB +.005 000	6	J	К	LB	Р	R ±0.10	TF ±0.10	UF
2.00	1/4	.38	.312	1 50	1.00	.38	4.00	2.31	1.43	2.75	3 38
2.50	1/4	.38	.375	1.50	1 00	41	4.00	2.31	1.84	3.38	4.12
3.00	1/4	.38	.375	1.50	1.00	.41	4 12	2.44	2.19	3.88	4.62
3.75	3/8	.62	438	1.75	1.25	53	4 88	2 69	2.76	4.69	5 50
4.50	3/8	.62	.438	1.75	1.25	.69	4.88	2.69	3.32	5.44	6.25
5.50	3/8	.62	.562	1 75	1 25	69	5 12	2.94	4.10	6.62	7.62
6.50	1/2	75	438	2.00	1.50	.84	5.75	3.19	4.88	7.62	8.62

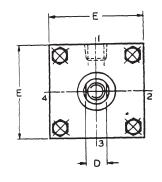
			T (THREAD)							
A	D	SMALL MALE SM	INTER- MEDIATE MALE IM	SHORT Female Sf	w	WF	Ŷ	ZB	ZF	ZJ
.75	.50	.44-20	50-20	.44-20	.62	1.00	1.88	5.00	5.00	4.62
75	.50	.44-20	.50-20	.44-20	.62	1.00	1.88	5.03	5.00	4.62
1.12	.88	.75-16	.88-14	.75-16	1.00	1.38	2.25	5.41	5.38	5.00
75	50	.44-20	50-20	44-20	.62	1.00	1.88	5.16	5.12	4.75
1 12	.88	.75-16	.88-14	.75-16	1.00	1.38	2.25	5.53	5.50	5.12
1.12	.88	.75-16	88-14	.75-16	.75	1 38	2.38	6.16	6.25	5.62
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	1.62	2.62	6.41	6.50	5.88
1.12	.88	.75-16	.88-14	.75-16	.75	1.38	2.38	6.16	6.25	5 62
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	1.62	2.62	6.41	6.50	5.88
1 12	.88	75-16	.88-14	.75-16	75	1 38	2 38	6.56	6.50	5 88
1.62	1.12	1.00-14	1.25-12	1.00-14	1.00	1.62	2.62	6.81	6.75	6.12
1.62	1.12	1.00-14	1.25-12	1.00-14	88	1.62	2.75	7.31	7 38	6 62
2 00	1.50	1 25-12	1.50-12	1 25-12	1 12	1 88	3.00	7.56	7.62	6.88

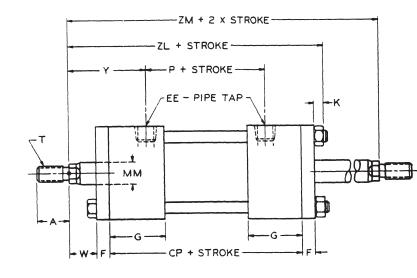
PRESSURE RATING: 150 P S I maximum operating pressure. Check Stroke Limitation Data (Page 250) which may reduce

NOTE: Dimensions are nominal except where specifically toleranced Tolerances on "Plus Stroke" dimensions will vary slightly

SHORT FEMALE THREAD T FEMALE FACE OF DELAT ROD NI A • W -- A -WE

# **MOUNTING ACCESSORIES**


## Series CA Composite Pneumatic Cylinders


# MXO-D Double Rod End⁺



These are standard accessories matched to bore size and piston rod code. The Mounting Bracket fits the cap end of Model MP1. The Bracket also fits the piston Rod Clevis with the same number (i.e. SB-1 Bracket fits SV-1 Rod Clevis). The pin is furnished with Model MP1 and fits the bracket, however, specify if additional pins are required. Pins also fit rod clevis and rod eyes. If you require accessories other than standard for that bore size or piston rod, specify the item number on your order.

**Rod Clevis** 





## **These Dimensions are Constant Regardless of Rod Diameter**

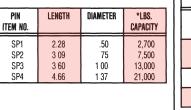
BORE	CP	E	EE NPTF	F	6	K	P
1 50	4 12	2.00	1/4	.38	1.50	38	2 31
2.00	4 12	2.50	1/4	.38	1.50	41	2 31
2 50	4 25	3.00	1/4	38	1.50	41	2.44
3.25	4 75	3.75	3/8	62	1 75	53	2 69
4 00	4.75	4.50	3/8	.62	1 75	53	2.69
5 00	5 00	5 50	3/8	62	1 75	69	2 94
6.00	5 50	6 50	1/2	.75	2 00	.69	3.19

## Dimensions are Affected by the Rod Diameter

Classification and classification of the cla	DD A 75 112 162	
PILEVIS PISTON RC I NO. CODE V-1 D V-2 F V-3 G V-4 H	DD A 75 112 162	
V-1 D V-2 F V-3 G V-4 H	DD A 75 112 162	
V-1 HO V-2 F V-3 G V-4 H	DD A 75 1 12 1 62	
I NO. PISTON RC No. Code V-1 D V-2 F V-3 G V-4 H	0D A 75 112 162	
ELEVIS         PISTON RC           I NO.         CODE           V-1         D           V-2         F           V-3         G           V-4         H	0D A 75 1 12 1 62	1
V-1 D V-2 F V-3 G V-4 H	75 1 12 1 62	1
V-4 H		1.
n	2 00	14
•	]	
	PIN	
	LENG	.
PIN PIN		
FURNISH		Ή
CUTI	IEK5	
	DIAM	AET
		.50 75
	DIA FURNISH COT IN LENGTH I NO. P1 2.28	DIA FURNISHED WIT COTTERS IN LENGTH DIAN P1 2.28

† Available in MX0, MX1, MX2, MX3, MX4, MT1 and MF1 mounting styles. See single rod pages for mounting instructions

PRESSURE RATING: 150 P S I maximum operating pressure Check Stroke Limitation Data (Page 250) which may reduce maximum operating pressure Check Stop Tube Data (Page 251) to see if stop tube is required


NOTE: Dimensions are nominal except where specifically toleranced Tolerances on "Plus Stroke" dimensions will vary slightly from dimensions shown due to manufacturing tolerances and tube compression.

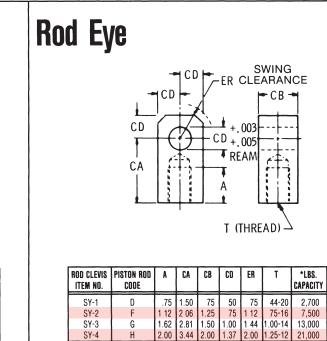
**Series CA Composite Pneumatic Cylinders** 



CB CD CE

CR

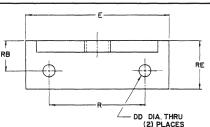


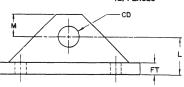

PIN LENGTH

> †BRACKET PISTON ITEM ROD CODE SB-1 D SB-2 F SB-3 G SB-4 Н † 2 required

**Brackets** 

### * CAUTION:


Accessory load rating may be lower than maximum force available from cylinder. Accessories load ratings are in pounds. Before specifying, compare maximum operating pull force in pounds developed by cylinder with load rating of accessory. Accessory load rating is the maximum recommended operating load for that accessory.




								CAPACITY
	75	75	50	1 50	2.00	1 50	.44-20	2,700
	1 12	1 25	75		3 12		75-16	
	1 62	1 50	1 00	3.12	4 12	3 00	1 00-14	13,000
ļ	2 00	2.00	1 37	4 12	5.50	4 00	1 25-12	21,000

SY-4

*LBS.





CA SERIES Bore dia.	CD	DD	E	ក	L	М	R	RB	RE	*LBS. Capacity
1.50 2 00 2.50	500	33	2 50	.19	.75	50	1 84	.53	88	1,425
3.25 4 00 5.00	750	39	3 75	38	1.25	75	2 76	74	1.25	4,200
ę QQ	1 000	52	6 50	38	1 50	.75	4.88	1.68	2.50	7,550
<u>6</u> .00	1 375	.52	6.50	.38	1 50	1 00	4.88	1 68	2.50	8,000

# **TECHNICAL INFORMATION**

## STROKE LIMITATION DATA

The rod diameter has to be capable of withstanding any compressive force developed by the cylinder working against the load. A piston rod diameter with adequate column strength to handle the compressive force of the application can be selected from the convenient pre-calculated chart at right.

To use this chart find the force value, developed by the application, in the left column. Next, select the figure which resembles your application and then multiply "D" times the factor given in that figure. Finally, opposite the correspond-ing force value, find the value of "L" which is equal to, or greater than, the figure derived from factoring "D". Directly above is the rod diameter which is capable of withstanding the forces developed in the application.

EXAMPLE: Cylinder Bore = 4.00" Operating PSI = 150 Force Value - 1885 lbs. Application - Resembles Fig. 2 - End Angle Mtg. Stroke = 40" "L" — .07 x 40; L = 28" Correct Rod Diameter = 1.00"

The total force is 1885 lbs., and the value of "L" is 28 inches in this application. The smallest diameter rod capable of handling this situation is 1.00 inch.

## FORCE DATA

	ROD	ROD	CYL. Work	WORK Area	PNEUMATIC PRESSURE		FLUID Required PER INCH OF STROKE			
BORE	CODE	DIA.	ACTION	SQ. IN.	50	70	90	100	150	CU. FT.
			PUSH	1 77	89	124	160	177	266	00102
1.50	D	62	PULL	1 46	73	102	131	146	219	00084
			PUSH	3 14	157	220	283	314	471	00182
2.00	D F	62 1.00	PULL	2.83 2.36	142 118	198 165	255 212	283 236	424 354	00164 00136
			PUSH	4 91	245	344	442	491	736	.00284
2.50	D F	62 1.00	PULL	4 60 4 13	230 206	322 289	414 372	460 413	690 620	00266 00239
			PUSH	8.29	414	580	746	829	1244	00480
3.25	F G	1.00 1.38	PULL	7 51 6.81	375 340	525 477	676 613	751 681	1126 1022	00435 00394
			PUSH	12 57	628	880	1131	1257	1886	00727
4.00	F G	1 00 1.38	PULL	11 78 11 08	589 554	825 776	1060 997	1178 1108	1767 1662	00682 .00641
			PUSH	19 64	982	1375	1768	1964	2946	01136
5.00	F G	1.00 1 38	PULL	18.85 18 15	942 908	1319 1270	1696 1633	1885 1815	2827 2722	.01091 01050
			PUSH	28.27	1413	1979	2544	2827	4240	01636
6.00	G H	1 38 1.75	PULL	26 79 25 86	1339 1293	1875 1810	2411 2327	2679 2586	4018 3879	01550 .01497

If a stop tube is required for the application, be sure to include the stop tube length when determining the length of

	DRCE		JE OF "I				and e rod. T
	ALUE bounds	.62	ON RO 1.00	1.38	1.75		Toda
- <u></u>	100	66	1.00	1.30	1.75		To de "L" u
	200	47					the st
	400	33	85				can fi
	600	27	70	132			tom o
	800	24	60	114	184		
	1000	21	54	102	165		
	1300	18	47	90	145		
	1700	16	41	78	127		
	2100	14	37	71	114		
	2500	13	34	65	104		-
	3000	12	31	58	95		From
	4000	10	21	51	83		mine
	5000 6000	9	24	40	67		ADD
	8000	7	10	42	58		· 'C
	E: SEE A		NTION	FIGUE	50		•
NOT	E. SEE F				IE0		
			an man			N.,	
LUID Equired INCH OF	]					stems, www.	tube I The a sions tube t limita
rroke U. Ft.						Si	
0102	1						
	-						
00084	-						
0182	4						
)0164 )0136						3	
0284				(	C	3	
0266	1					•	
0239				_`\\			s
0480			(		*		ICHE
)0435	1						A N
00394		•					
00727		~					UE O
0682	1						VALI
0641							
01136							
01091	1						

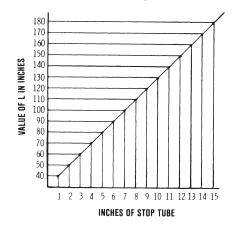
## STOP TUBE DATA

Long stroke cylinders can be subjected to a buckling action and excessive bearing wear due to the weight of the exposed rod. To reduce wear a stop tube is recommended.

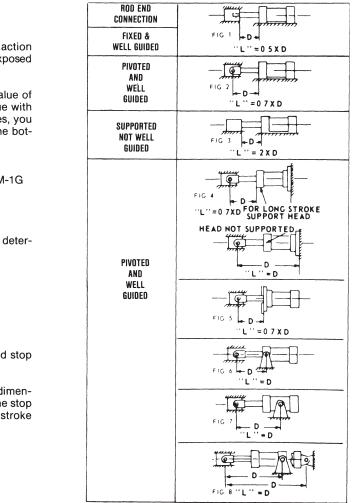
To determine if a stop tube is required, find the total value of "L" using the stroke limitation chart. Compare this value with the stop tube chart. If the value of "L" exceeds 40 inches, you can find the recommendation for stop tube length at the bottom of the chart.

EXAMPLE PROBLEM: Cylinder Model MP1-CA-NC-4.00 x 27.00 - GSM-1G Accessory - SV-3 Clevis Pressure - 150 PSI Clevis Mount - Horizontal

From the description, the cylinder falls into Fig. 8. To determine the value of "L":

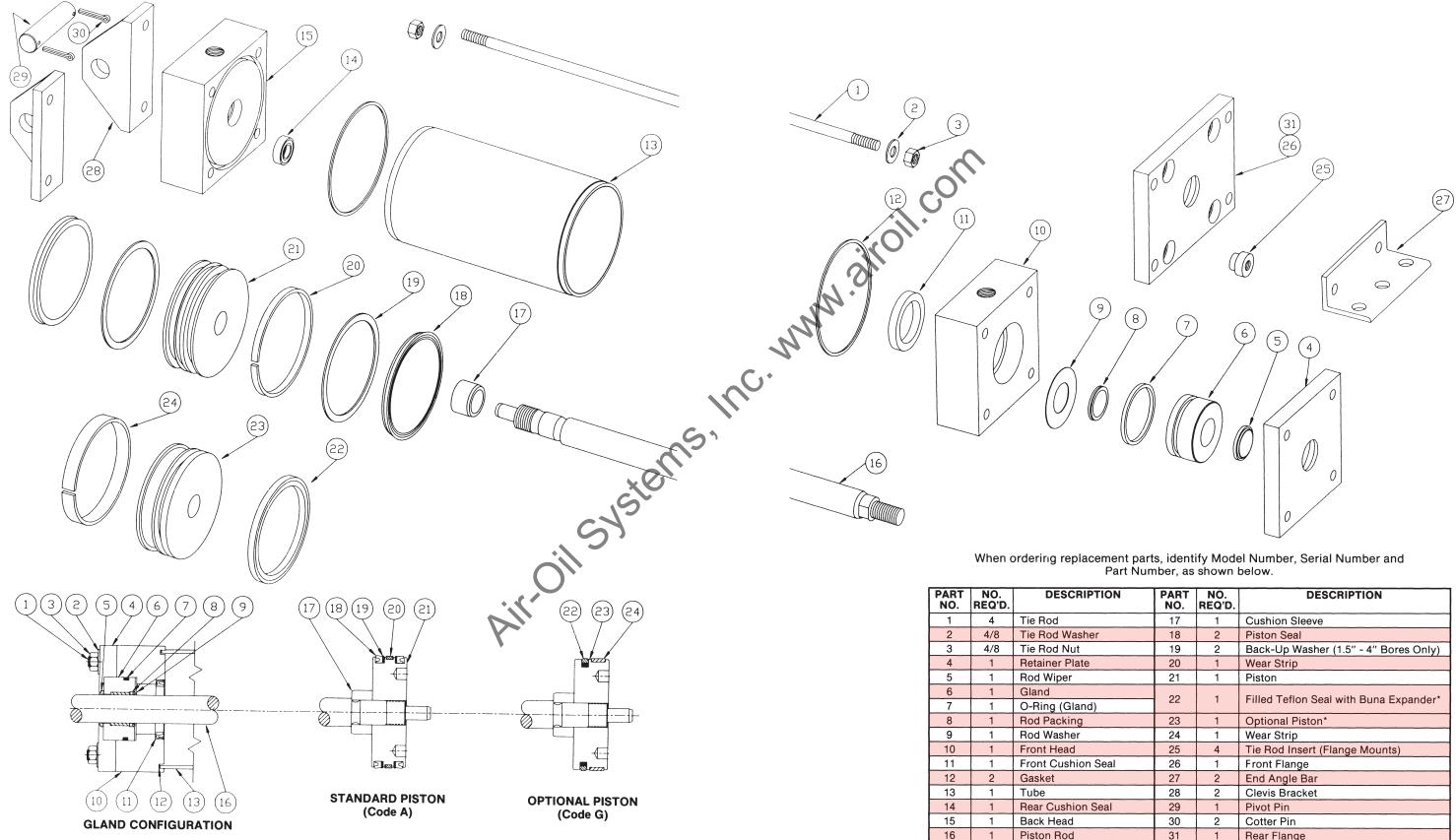

ADD:	MP1	"XC" Dimension	7.12″
	SV-3	"CE" Dimension	3.12″
+	Two tin	nes stroke (2 x 27)	54.00"

Total Value of "L" 64.24"


Looking this up on the chart, you'll find a recommended stop tube length of 4 inches.

The amount of stop tube will increase the stroke-plus dimensions of the cylinder by the same value. Add length of the stop tube to the value of "L" and recheck column strength on stroke limitation chart.

**STOP TUBE CHART** 




## Series CA Composite Pneumatic Cylinders



CYLINDER WEIGHTS							
CYLINDER Bore	BASE WEIGHT At Zero Stroke	BODY WEIGHT PER INCH Of Stroke	ROD Diameter	ROD WEIGHT PER INCH OF STROKE			
1 50	1.200 lbs.	0.100 lbs	0.625	0.052 lbs.			
2 00	2.100	0.150	1.000	0.223			
2.50	2.760	0.160	1.375	0.421			
3.25	5.500	0.220	1.750	0.682			
4.00	7.000	0 240					
5.00	9.750	0.370					
6.00	16.300	0.390					

**PARTS LIST** 



N	PART NO.	NO. REQ'D.	DESCRIPTION
	17	1	Cushion Sleeve
	18	2	Piston Seal
	19	2	Back-Up Washer (1.5" - 4" Bores Only)
	20	1	Wear Strip
	21	1	Piston
	22	1	Filled Teflon Seal with Buna Expander*
	23	1	Optional Piston*
	24	1	Wear Strip
	25	4	Tie Rod Insert (Flange Mounts)
al	26	1	Front Flange
	27	2	End Angle Bar
	28	2	Clevis Bracket
I	29	1	Pivot Pin
	30	2	Cotter Pin
	31	1	Rear Flange

*Optional Part

# STORAGE, INSTALLATION AND MAINTENANCE DATA

MAINTENANCE:

Composite Cylinders.

# **EXCELLENT CORROSION RESISTANCE ASSURES LONG SERVICE** LIFE IN THE HARSHEST ENVIRONMENTS. COST EFFECTIVELY.

## **STORAGE:**

Hanna Series CA Composite Cylinders are delivered with colored plastic port plugs which protect the inside of the cylinder from external contamination. Keep these protective port plugs in the cylinders until the time of installation. Store the cylinders indoors in a clean, dry environment, keeping them in a vertical position with the rod up, whenever practical.

## **INSTALLATION:**

Proper mounting alignment, mounting fasteners, torque and cleanliness are essential to assure efficient operation and long service life of your CA cylinders. Special care should be taken, as follows:

Trunnion Mount (MT1): Lubricated pillow blocks with bearing tolerances, rigidly mounted and properly aligned, should be used. Make sure the cylinder is free to swing without interference or binding.

Tie Rod Mounts (MX0, MX1, MX2, MX3, MX4): Refer to Tie Rod Torque chart for proper thread size and recommended torque value.

Cap Fixed Clevis Mount (MP1): Remove cotter pin, align cylinder pin holes with mounting member hole, insert cylinder pin, and replace cotter pin. Make sure the cylinder moves through its required arc without binding or interference. Properly align piston rod parallel to blind end.

Flange Mounts (MF1, MF2): Washers must be used to mount all flange mount cylinders! Refer to Flange Mount Cylinder Torque chart.

Pipe Ports and Connections: Series CA Composite Cylinders are furnished with standard NPTF pipe ports. Refer to Recommended Pipe Torques chart for proper torque value by port size. The use of Teflon tape is not recommended.

## **FASTENER TORQUES**

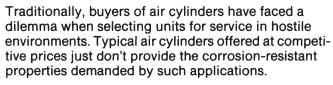
TIE ROD TORQUES							
BORE	SIZE	TORQUE					
1.50	.25-20	3 ft-Ibs.					
2.00	.31-18	7 ft-lbs.					
2.50	.31-18	7 ft-Ibs.					
3.25	.38-16	15 ft-lbs.					
4.00	.38-16	15 ft-Ibs.					
5.00	.50-13	25 ft-lbs.					
6.00	.50-13	25 ft-Ibs.					

TORQUE FOR FLANGE MOUNTS							
TORQUE							
4 ft-lbs.							
10 ft-lbs.							
10 ft-lbs.							
20 ft-lbs.							
20 ft-lbs.							
30 ft-lbs.							

30 ft-lbs.

6.00

RECOMMENDED PIPE TORQUES						
NPTF SIZE	TORQUE MAX.					
1/4″	15 ft-lbs.					
3/8″	25 ft-lbs.					
1/2″	40 ft-lbs.					


By following Hanna's Storage and Installation recommendations, you can expect long service life from your Series CA

To replace rod seals and rod wiper, relieve the front end tie rod torque, and remove retainer plate and gland. Position the new rod seal and rod wiper in the appropriate grooves. Use only genuine Hanna replacement parts. Replace gland, retainer plate and tie rods. Tighten tie-rod nuts to proper torque value as shown in the Tie Rod Torque chart.

To replace piston seals, disassemble the entire cylinder. Then, for Standard Piston Seals (Code A), cut and remove the old U-cup seals from the piston grooves. When installing the new U-cups, be careful not to cut the seals, or damage the sealing lips.

For Optional Piston Seals (Code G), cut the old piston seal, and remove it and the O-ring from the groove. Install new O-ring. Next, slightly stretch the Teflon piston seal and work it into the groove. Carefully insert the ram assembly into the tube - this will assure the Teflon seal is reshaped equally.

systems, mc. When replacing either Code A or Code G Piston Seals, also replace gaskets at both tube ends.



The purchase decision, therefore, generally comes down to a choice from several high-cost, yet lessthan-adequate options: all stainless steel cylinders; models made from brass, bronze or other non-ferrous metals; cylinders plated with nickel, cadmium, or zinc; and those coated with epoxy paint, among others, have all been employed in the attempt to conquer the problem of corrosion.

Nor only does the user pay a stiff price in the initial purchase. Often, these high-cost cylinders fail to provide an effective solution to the problem. Just a minor scratch, dent or crack in the plating or coating, and the cylinder is vulnerable to corrosive attackand ultimate failure.

## Hanna innovates a better answer

Hanna Corporation recognized that the marketplace desperately required a better choice, and thus set out to innovate an air cylinder that would provide long service life in corrosive environments-and at an affordable price.

In selecting the materials to be used for this cylinder, Hanna's Design Engineers sought the optimum balance between corrosion resistance, high strength, operating performance and cost.

## Series CA — a truly new concept

The result of Hanna's extensive research and development program is the Series CA Composite Pneumatic Cylinder line. These unique models are manufactured entirely of materials that meet the required cost/performance balance goals.

Series CA cylinders are designed and precisionmanufactured to be impervious to most types of corrosion-from atmospheric conditions, galvanic reactions and microbiological attack, as well as localized corrosion typically caused by pitting, surface scratches, plating or coating defects.

CA cylinders also provide excellent resistance to a wide range of chemicals. They are not attacked by common solvents such as alcohol or petroleum products. They may be used in environments with low concentrations of mineral acids, and with fruit acids such as citric, acetic and lactic. In addition, the cylinders are unaffected by most salt solutions.

Caution: Some of the materials used in the manufacture of CA cylinders are attacked by oxidizing acids such as chromic and nitric. Contact with alkali solutions should also be avoided, unless the solutions are in very dilute concentrations.

In cases where the composite materials used in standard CA cylinders are not appropriate, extensive engineering knowledge of composite materials enables Hanna to provide the proper material selection for specific operating environments.

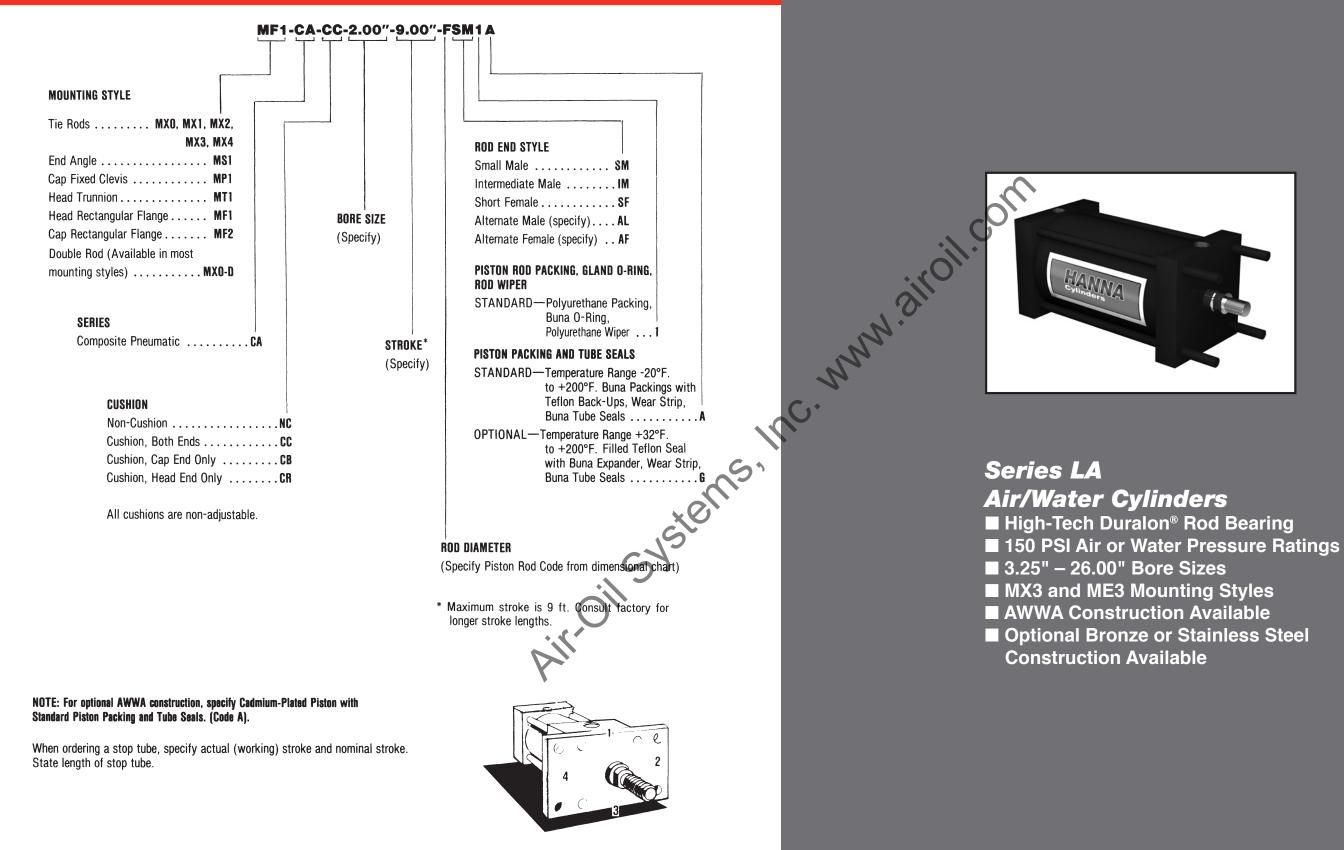
With minor factory modifications*, CA cylinders meet American Water Works Association (AWWA) specifications C504/C540 for non-metallic water hydraulic and pneumatic cylinder applications.

## Wide range of applications

The unique combination of utmost corrosion resistance and affordability makes Hanna Series CA Composite Cylinders ideal for a wide range of lowpressure air cylinder applications. Typical operating environments include:

- Municipal and industrial waste treatment plants
- Food processing plants
- Pulp and paper mills
- Textile mills
- Dairies and bottling plants
- Chemical and petrochemical plants
- Car washes
- Other corrosive environments

### **Excellent design flexibility**


Series CA cylinders provide outstanding flexibility in machinery design. Developed for pressure ratings of 150 p.s.i., they are offered in bore sizes from 1.50" through 6.00". 11 N.F.P.A. mounting styles are available.

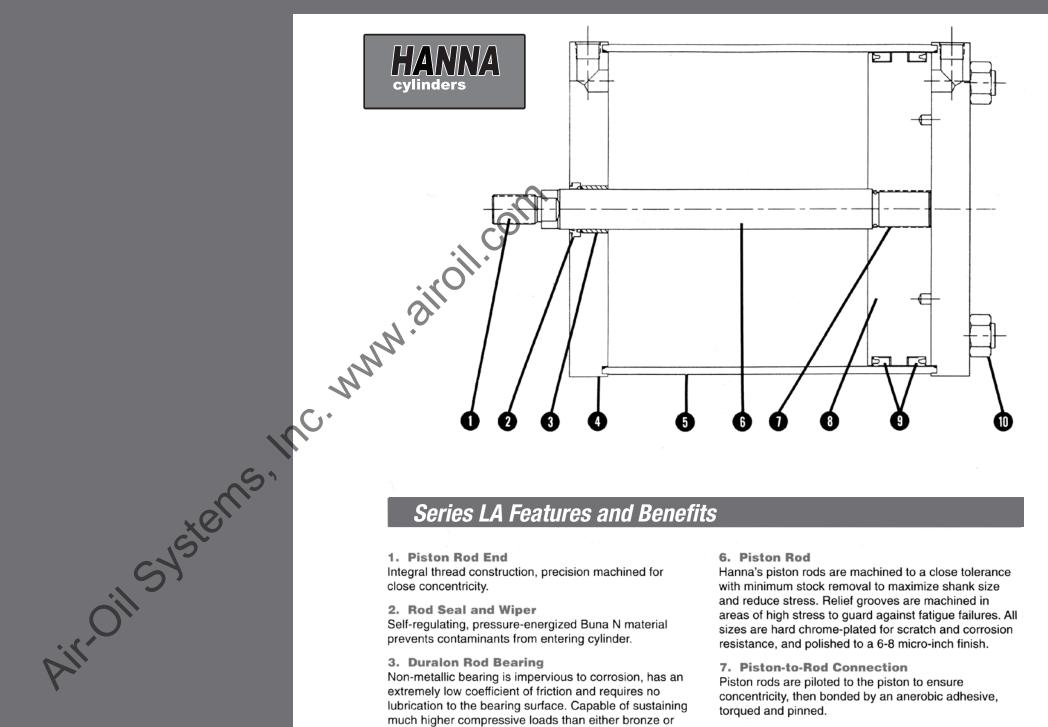
Hanna also offers a selection of electrical controls for CA cylinders. Proximity switches, totally unaffected by harsh environments, are available for mounting on bore sizes from 2.50" through 6.00". In addition, standard and 3-Amp Reed switches, also well suited for hostile environment use, are available on CA cylinders, 1.50" through 5.00" bores.

Add up the advantages of Hanna's CA Composite Pneumatic Cylinders. Corrosion resistance, high strength, low-maintenance service and affordable cost combine to make them the best value in cylinders that stand up to the toughest conditions.

* Consult Hanna Corporation

## **HOW TO ORDER**




Port location: if other than position 1, must be specified. Mounting accessories and switches must be specified if required.

Series CA Composite Pneumatic Cylinders

Series LA Air/Water Cylind



# **SERIES LA AIR/WATER CYLINDERS**



## Series LA Features and Benefits

Integral thread construction, precision machined for

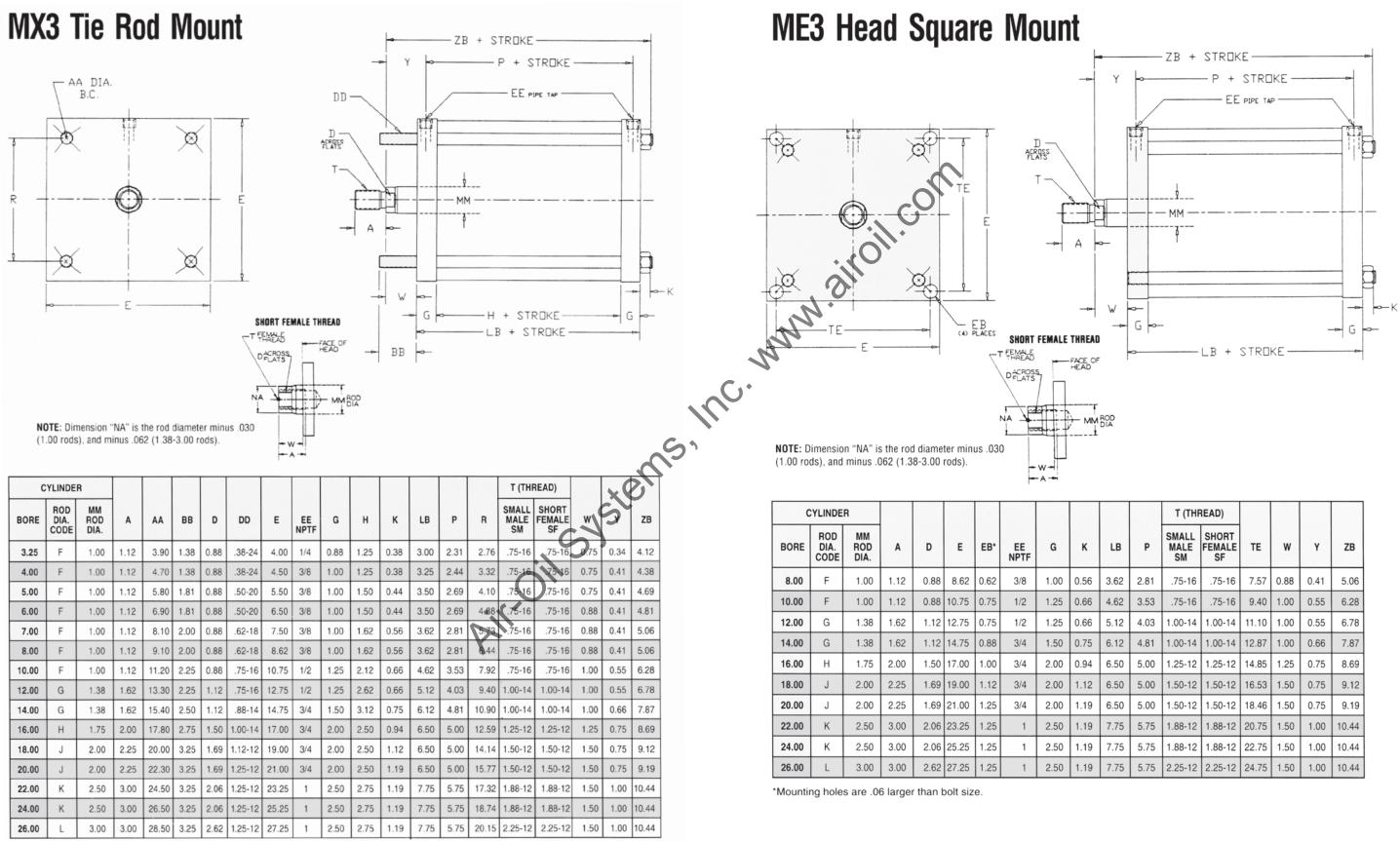
## 2. Rod Seal and Wiper

Self-regulating, pressure-energized Buna N material prevents contaminants from entering cylinder.

### 3. Duralon Rod Bearing

Non-metallic bearing is impervious to corrosion, has an extremely low coefficient of friction and requires no lubrication to the bearing surface. Capable of sustaining much higher compressive loads than either bronze or cast iron.

### 4. Heads

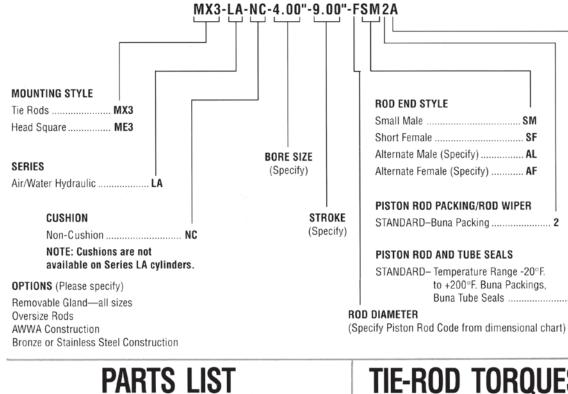

Steel heads are precision machined to assure accurate alignment and close concentricity between piston, tube, piston rod and rod bearing.

### 5. Tubing

Steel tubing is precision-honed to 16 rms, and chromeplated for corrosion resistance.

	6. Piston Rod Hanna's piston rods are machined to a close tolerance with minimum stock removal to maximize shank size and reduce stress. Relief grooves are machined in areas of high stress to guard against fatigue failures. All sizes are hard chrome-plated for scratch and corrosion resistance, and polished to a 6-8 micro-inch finish.
g	<b>7. Piston-to-Rod Connection</b> Piston rods are piloted to the piston to ensure concentricity, then bonded by an anerobic adhesive, torqued and pinned.
2	8. Piston One piece ductile iron piston is threaded to piston rod, and furnished with breakaway spirals on each side.
,	9. Piston Sealing System Two Buna U-cups seals are self-régulating and pressure-energized for excellent sealing capabilities.
•	<b>10. Tie-Rods and Tie-Rod Nuts</b> Tie-rods and tie-rod nuts are made of high strength, corrosion-protected steel.

## SERIES LA 3.25" – 26.00" Bores




Note: 16.00" bore & larger will have tie rod washers.

# SERIES LA 8.00" - 26.00" Bores

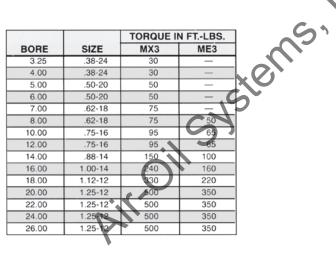
			Ť (THREAD)							
(	LB	Ρ	SMALL MALE SM	SHORT FEMALE SF	TE	w	Y	ZB		
6	3.62	2.81	.75-16	.75-16	7.57	0.88	0.41	5.06		
66	4.62	3.53	.75-16	.75-16	9.40	1.00	0.55	6.28		
6	5.12	4.03	1.00-14	1.00-14	11.10	1.00	0.55	6.78		
75	6.12	4.81	1.00-14	1.00-14	12.87	1.00	0.66	7.87		
94	6.50	5.00	1.25-12	1.25-12	14.85	1.25	0.75	8.69		
2	6.50	5.00	1.50-12	1.50-12	16.53	1.50	0.75	9.12		
9	6.50	5.00	1.50-12	1.50-12	18.46	1.50	0.75	9.19		
9	7.75	5.75	1.88-12	1.88-12	20.75	1.50	1.00	10.44		
19	7.75	5.75	1.88-12	1.88-12	22.75	1.50	1.00	10.44		
19	7.75	5.75	2.25-12	2.25-12	24.75	1.50	1.00	10.44		

## Series LA Air/Water Cylinders



000

0


ด

**TIE-ROD TORQUES** 

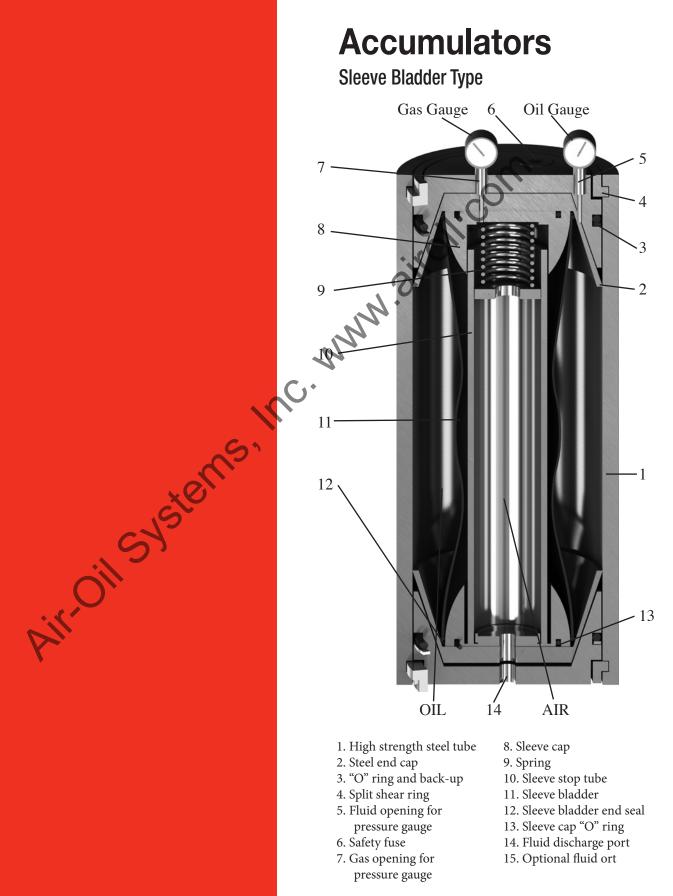
PART DESCRIPTION QTY. NO. 1 4 Tie Rod Tie Rod Nut 2 4 3 1 Back Head 2 U-Cup Packing 4 5 1 Piston Tube 6 1 7 2 O-Rina 8 Front Head 1 Duralon Rod Bearing 9 1 Rod Wiper-Seal 10 1 Piston Rod 11 1 ÷

A

When ordering replacement parts, identify Model Number, Serial Number and Part Number, as shown below.



. ac. www.airoil.com


Series Accumulators/ **Nuclear Actuators** 

00

0



# SERIES ACCUMULATORS/NUCLEAR ACTUATORS



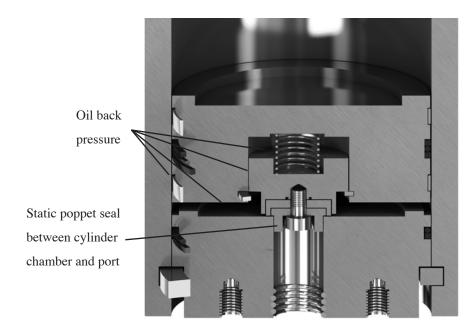
**Series Accumulators/Nuclear Actuators** 

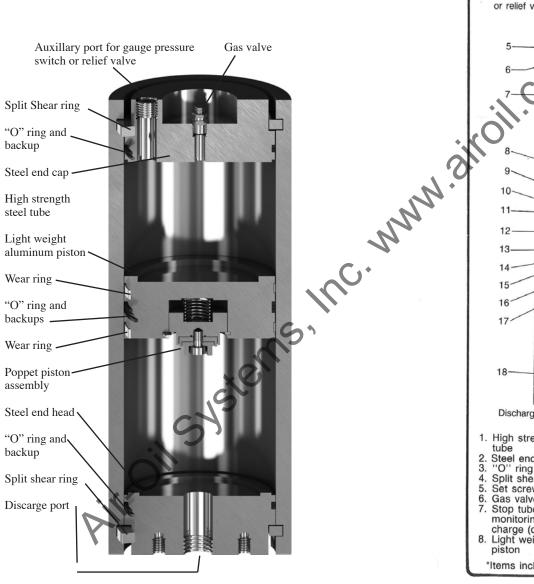
The Sleeve Bladder Accumulator, (patent applied for) is very unique in that unlike conventional bladder accumulators which have a balloon type bladder open on only one end, it has many features and advantages as are emphasized as follows:

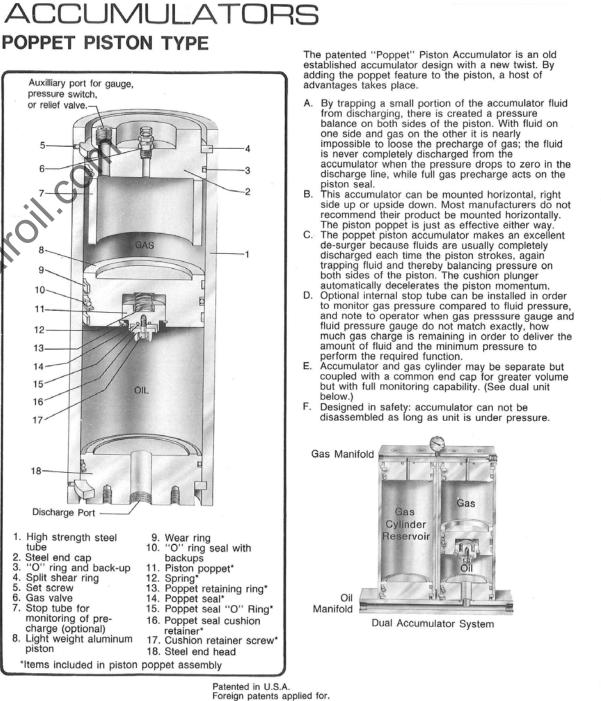
- A. When recharged with gas, filling the entire accumulator, if gas charge begins to leak out, or if excessive oil pressure is supplied to the accumulator, or if precharge pressure is somewhat under estimated or even under charged for any reason, the fluid pressure will tend to crush and distort the bladder which has no backing to resist the action. The sleeve bladder accumulator has a sleeve stop tube to back up the bladder in this event.
- B. Having end caps, gauge ports for either end of the accumulator can be supplied for monitoring both gas charge and fluid pressure. Try that on a conventional bladder accumulator.
- C. Like its counter part the Poppet Piston Accumulator with internal stop tube, has the ability to monitor the gas pressure to match the fluid pressure. If any precharge is lost for whatever reason and the sleeve bladder lays against the sleeve stop tube, then the gas and fluid gauges will not agree with each other. Further, by noting the gas pressure gauges, it can be determined exactly how much gas charge is left and how much fluid it will deliver and at what pressure.
- D. If you look closely at the assembly, it can be noted that there are no fasteners required to assemble the sleeve bladder accumulator. What's more, it cannot be disassembled accidentally when pressure is in the gas chamber. It is pressure locked at the end caps, such that the end caps must be depressed inward to release the split shear ring. This cannot be done under pressure without knowledge that much more force than the spring is holding the end cap for depressing even without a gauge to note pressure.
- E. The sleeve bladder accumulator can be installed horizontally without damage resulting to the bladder. Don't try this with a balloon type bladder accumulator or you will find out how quickly you can rub a hole in the bladder.
- F. The sleeve bladder accumulator can also be mounted with a common end cap to another accumulator for manifolding or piping convenience.
- G. Other than these fantastic features the Sleeve Bladder Accumulator is just like any other old bag type accumulator.

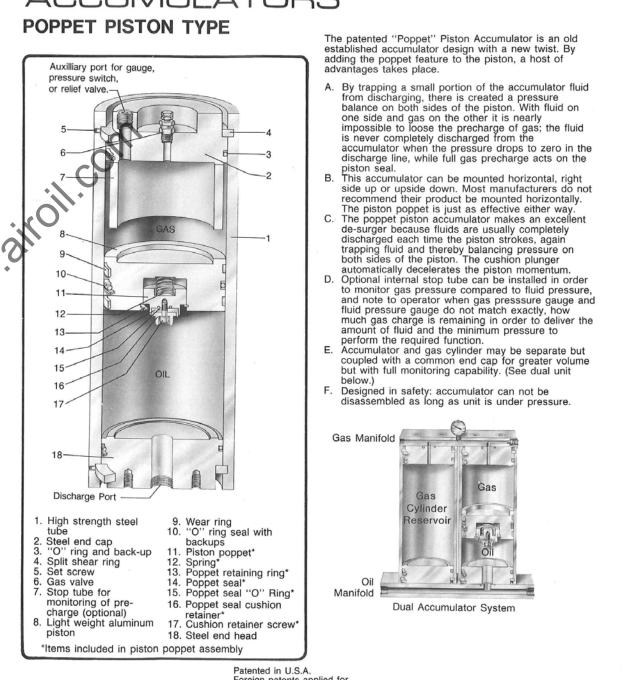
## Poppet Piston Accumulator Lasts 5 Times Longer...

Compared to the service life of conventional piston accumulators, it takes 5 times longer to reach detectable leakage...why?


This is why...


The addition of a patented poppet piston assembly with a built-in cushion secured within the main piston makes all the difference. By retaining a small unusable portion of the accumulator oil from discharging, then pressure is balanced on both sides of the piston. With oil on one side and gas on the other, the precharge gas cannot get past the piston seal, since the oil is never completely discharged from the accumulator, even when the pressure in the discharge line drops to zero.


The poppet seal assembly depends on zero leakage and it is. By trapping oil between the poppet seal and the piston seal, the piston seal is pressure energized on both sides, which compensates for piston seal wear. The end result is that the integrity of the main piston seal is no longer critical and leakage emphasis is shifted to the integrity of the poppet seal, hence giving the piston seal 5 or more times its normal life, regardless of the mounting position, and can even be self monitored. Try that with a bladder or conventional piston accumulator.


The poppet seal is not subject to frictional wear from moving back and forth in the cylinder because it is a static seal and called upon to perform only when the main piston bottoms out, (which is when the gas escapes other accumulators). The main piston seal (a dynamic seal) must be and is very much subject to wear. In fact, every time the piston changes position in the slightest there is dynamic wear on the piston seal.

Accumulators are used in oil industry applications, power generating, military aerospace, commercial aviation, ships, environmental water control, dams, mobile and off-highway equipment.





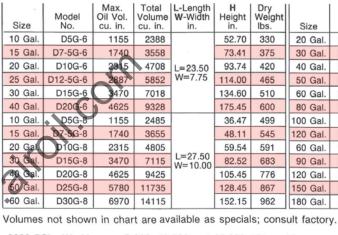




## Series Accumulators/Nuclear Actuators

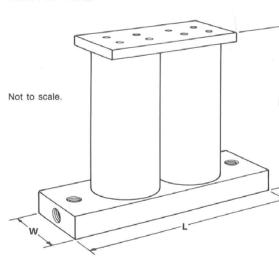
## ACCUMULATORS HYDRO-PNEUMATIC POPPET PISTON TYPE

- Poppet Piston Design Maintains Precharge.
- Cushioned Cylinder Eliminates Abrupt Bottoming Resulting in Less Wear and Noise.
- Non Welded Construction; Both End Caps Removable.
- Sizes and General Data
- Volumes not shown in chart are available as specials; consult facto


 Water Operating Models Available ASME Coded

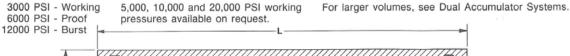
Models Available.

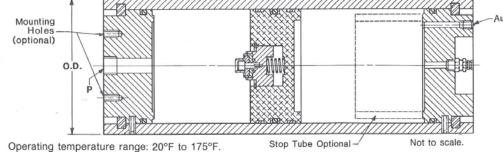
Dry Weight Ibs. Total Model No. O.D. Volum Model Volume Port Length cu. in Size Size No. cu. in. Size in. in. 10 in.3 10C-25 3/8" 2.86 7.82 71/4 21/2 Gal. 2-5G-8 58 10 to 3⁄4″ 5G-8 30 in.3 30C-25 30 2.86 11.90 9 5 Gal. 115 60 NPT 2.86 18.00 11 71/2 Gal. 7-5G-8 1740 60 in.3 60C-25 231 60 in.3 1/2" 4.53 12.27 27 10 Gal. 10G-8 60C-4 60 to 347 1/2 Gal. 05G-4 116 4.53 16.73 31 15 Gal. 15G-8 11/2" NPT 4.53 20G-8 462 1G-4 231 25.88 40 20 Gal. 1 Gal. 578 1-5G-4 350 4.53 35.35 49 25 Gal. 25G-8 11/2 Gal. Straight Thd. 21/2 Gal. 2-5G-4 580 4.53 53.66 66 30 Gal. 30G-8 697 808 6.78 16.54 83 35 Gal. 35G-8 1 Gal. 1G-6 231 3/4" 10G-10 231 110 10 Gal 21/2 Gal. 2-5G-6 580 6.78 28.88 11/2", 4 Gal. 4G-6 925 6.78 41.09 137 15 Gal. 15G-10 347 or 21/2" 5 Gal 6.78 49.22 155 20 Gal. 20G-10 462 5G-6 1155 NPT 25G-10 578 71/2 Gal. 7-5G-6 1740 6.78 69.91 200 25 Gal. or Straight 6.78 90.24 245 30G-10 10 Gal. 10G-6 2315 30 Gal. 697 12 Gal. 12G-6 2776 Opt. 6.78 106.55 281 40 Gal. 40G-10 924 Flange 50G-10 1155 50 Gal. 15 Gal. 15G-6 3470 6.78 131.10 335 Ports 60 Gal. 60G-10 1386 171.95 425 20 Gal. 20G-6 4625 6.78


tory						1
al me in.	P Port Size	O.D. in.	L Length in.	Dry Weight Ibs.		10 10 10
80	3/4"	9.03	21.29	184		-
55	to 1½″	9.03	32.73	230		4
40	NPT	9.03	44.37	276		H
15	Or	9.03	55.81	322		H
70	Straight Thd.	9.03	78.78	414		
25	21/2"* NPT	9.03	101.76	506		3
80	or	9.03	124.74	597		F
70	Opt. Flange	9.03	148.42	693	<b>\</b>	
85	Ports	9.03	170.60	781	N	•
15		11.28	40.99	455		Vo
70	21/2"	11.28	55.71	547		3
525	NPT or	11.28	70.44	638		6
80	Straight	11.28	85.12	731		12
70	Thď. Opt.	11.28	100.27	825		
40	Flange	11.28	129.17	1007	C)*	
50	Ports	11.28	158.58	1188		
860		11.28	188.00	1365		
nes,	see Dua	Accum	nulator S uxiliary P	systems. ort	inc. www.	N
No	t to scale.		Ŕ			01
						``

## DUAL ACCUMULATOR SYSTEMS HYDRO-PNEUMATIC POPPET PISTON TYPE Sizes and General Data




3000 PSI - Working 6000 PSI - Proof 12000 PSI - Burst


5,000, 10,000 and 20,000 PSI working pressures available on request.



Oil Volume at indicated Operating Pressures. (10 in.3 to 30 Gallon capacities only.)

*21/2" ports are available on special order due to larger piston poppet assembly required.

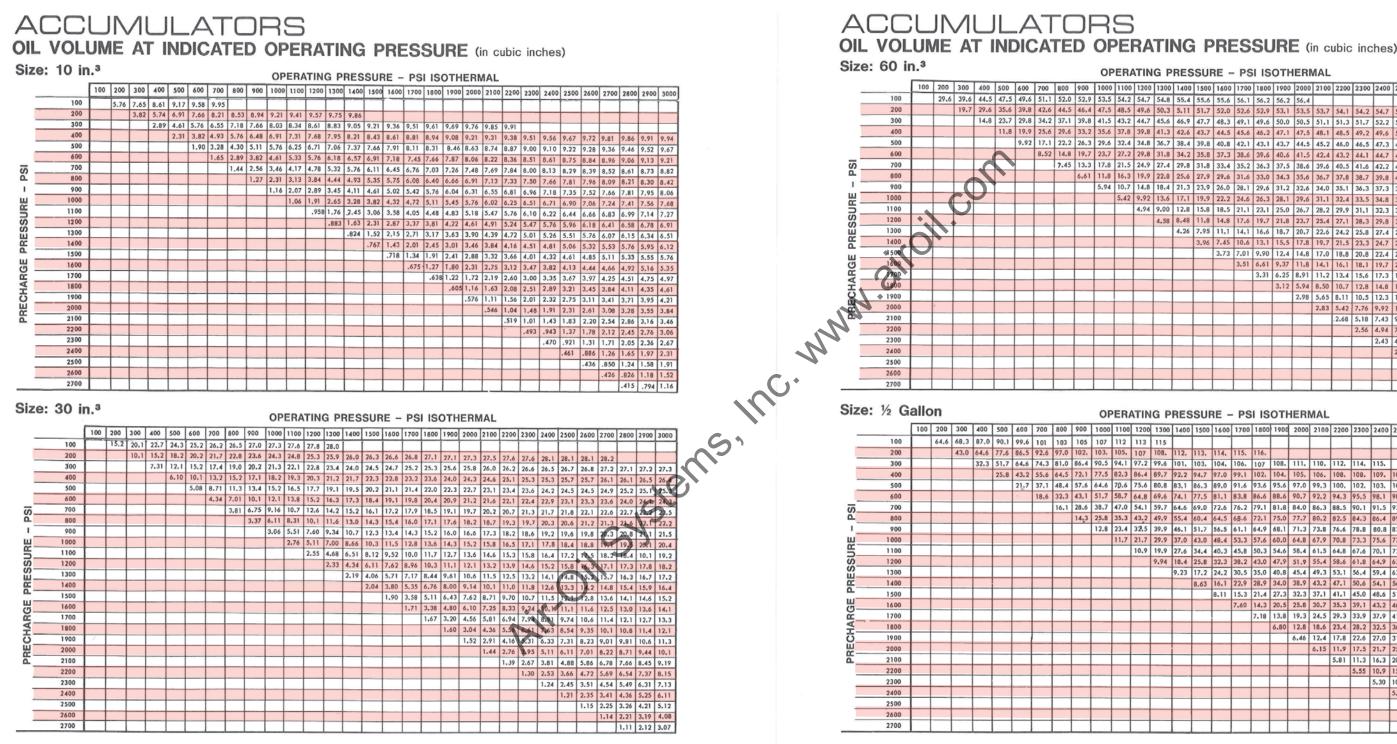




Optional temperature operating ranges: -60°F to 350°F.

Oil Volume at indicated Operating Pressures. (10 in.3 to 30 Gallon capacities only.)

## Series Accumulators/Nuclear Actuators


### ASME Coded Models Available. Total L-Length Volume W-Width Max. H Dry Weight Height in. Model Oil Vol. Size No. cu. in. cu. in. in. lbs. 20 Gal. D10G-10 2315 4942 44.98 857 30 Gal. D15G-10 3470 7252 59.68 949 40 Gal. D20G-10 4625 9562 74.39 1041 50 Gal. D25G-10 5780 11872 L=33.00 89.09 1133 W=12.00 60 Gal. D30G-10 6970 14252 104.24 1228 80 Gal. 9240 18792 133.15 1408 D40G-10 162.56 1592 100 Gal. D50G-10 11550 23412 120 Gal. D60G-10 13860 28032 191.97 1775 60 Gal. D30G-12 6970 14252 78.88 1495 90 Gal. D45G-12 10395 21102 109.15 1748 L=38.00 120 Gal. 13860 28032 139.79 2004 D60G-12 W=14.00 150 Gal. 170.43 2259 D75G-12 17325 34962 962 180 Gal. D90G-12 20790 41892 201.07 2514

Operating temperature range: 20°F to 175°F. Optional temperature ranges: -60°F to 350°F.

• Water Operating Models Available.

	Dua	Accumula	tor System	ns Porting Op	otions
	Model (Last Digit)	End Port NPT	Top o NPT	of Bottom Plate Straight Thd.	Options Flange
H 	-6	11/2	21/2	21/2	21/2
	-8	11/2	21/2	21/2	21/2
	-10	11/2	21/2	3	3
	-12	11/2	21/2	3	3

### 265



### **OPERATING PRESSURE - PSI ISOTHERMAL**

	-																	
200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
54.7	54.8	55.4	55.6	55.6	56.1	56.2	56.2	56.4										
19.6	50.3	5.11	51.7	52.0	52.6	52.9	53.1	53.5	53.7	54.1	54.2	54.7	54.8	54.8	55.2	55.2	55.3	55.4
4.7	45.6	46.9	47.7	48.3	49.1	49.6	50.0	50.5	51.1	51.3	51.7	52.2	52.4	52.4	52.9	53.0	53.3	53.5
19.8	41.3	42.6	43.7	44.5	45.6	46.2	47.1	47,5	48.1	48.5	49.2	49.6	50.1	50.5	50.8	51.1	51.2	51.5
84.8	36.7	38.4	39.8	40.8	42.1	43.1	43.7	44.5	45.2	46.0	46.5	47.3	47.5	48.1	48.6	49.1	49.2	49.5
9,8	31.8	34.2	35.8	37.3	38.6	39.6	40.6	41.5	42.4	43.2	44.1	44.7	45.1	45.6	46.4	46.7	47.1	47.5
4.9	27.4	29.8	31.8	33.4	35.2	36.3	37.5	38.6	39.6	40.5	41.6	42.2	42.7	43.3	44.1	44.5	45.0	45.5
9.9	22.8	25.6	27.9	29.6	31,6	33.0	34.3	35,6	36.7	37.8	38.7	39.8	40.6	41.3	41.7	42.6	43.1	43.5
4.8	18.4	21.3	23.9	26.0	28.1	29.6	31.2	32.6	34.0	35.1	36.3	37.3	38.2	38.8	39.8	40.5	41.2	41.7
.92	13.6	17.1	19.9	22.2	24.6	26.3	28.1	29.6	31.1	32.4	33.5	34.8	35.6	36.7	37.6	38.4	39.2	39.8
.94	9.00	12.8	15.8	18,5	21.1	23.1	25.0	26.7	28.2	29.9	31.1	32.3	33.4	34.5	35.3	36.1	37.1	37.5
	4.58	8.48	11.8	14.8	17.6	19.7	21.8	23.7	25.4	27.1	28.3	29.8	30.8	32.1	33.3	34.0	35.0	35.6
		4.26	7.95	11,1	14,1	16.6	18.7	20.7	22.6	24.2	25.8	27.4	28.7	29.6	30.9	31.8	32.8	33.8
			3.96	7.45	10.6	13.1	15,5	17.8	19.7	21.5	23.3	24.7	26.3	27.5	28.8	29.8	30.9	31.8
				3.73	7.01	9.90	12.4	14.8	17.0	18.8	20.8	22.4	23.7	25.1	26.3	27.8	28.7	29.6
					3.51	6,61	9.37	11.8	14.1	16.1	18.1	19.7	21.3	22.8	24.1	25.6	26.8	27,7
						3.31	6.25	8.91	11.2	13.4	15.6	17.3	19.1	20.7	22.0	24.5	24.7	25.9
							3.12	5.94	8.50	10.7	12.8	14.8	16.6	18.4	19.9	21.3	22.6	23,9
								2,98	5.65	8.11	10.5	12.3	14.4	16.1	17.7	19.3	20.4	21.7
									2.83	5.42	7.76	9.92	11.8	13.8	16.1	17.1	18.6	19.7
										.2.68	5.18	7.43	9.51	11.3	13.3	14.7	16,3	17.7
											2.56	4.94	7.13	9.14	11.1	12.8	14.2	15.7
												2,43	4,75	6.84	8.78	10.5	12.3	13.7
													2.37	4,56	6,58	8,51	10.1	11.8
														2.28	4.41	6.36	8.21	9.92
														-	2.21	4.27	6.18	7.91
															_	2.15	4.11	5.95

### **OPERATING PRESSURE - PSI ISOTHERMAL**

200	1200																	
	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
13	115																	
07	108.	112.	113.	114.	115.	116.												
1.2	99.6	101.	103.	104.	106.	107	108.	111.	110.	112,	114.	115.						
.4	89.7	92.2	94.7	97.0	99.1	102.	104.	105.	106.	108.	108.	109.	109.	109.	111.	110.	111.	
5.6	80.8	83.1	86.3	89.0	91.6	93.6	95.6	97.0	99.3	100.	102.	103.	104.	105.	106.	107.	108.	109.
1.8	69.6	74.1	77.5	81.1	83.8	86.6	88.6	90,7	92.2	94.3	95.5	98.1	98.2	99.6	102,	103.	104,	105,
1.1	59.7	64.6	69.0	72.6	76.2	79.1	81.8	84.0	86.3	88.5	90.1	91.5	93.2	94.6	95.9	97.2	98.1	99.3
3.2	49,9	55.4	60.4	64.5	68.6	72.1	75.0	77.7	80.2	82.5	84.3	86.4	89.0	89.7	91.0	92.4	93,6	94.7
2.5	39.9	46.1	51.7	56.5	61.1	64.9	68.1	71.3	73.8	76.6	78.8	80.8	82.9	84.7	86.5	87.8	89.4	90.5
.7	29.9	37.0	43.0	48.4	53.3	57.6	60.0	64.8	67.9	70.8	73.3	75.6	77.7	80.8	81.6	83.1	85.1	86.3
).9	19,9	27.6	34.4	40.3	45.8	50.3	54.6	58.4	61.5	64.8	67.6	70.1	72.6	74.8	76.7	78.8	80.7	82.0
	9.94	18.4	25.8	32.3	38.2	43.0	47.9	51.9	55.4	58.6	61.8	64.9	67.5	69.6	72.0	74.3	76.4	77.5
		9.23	17.2	24.2	30.5	35.0	40.8	45.4	49.3	53.1	56.4	59.4	62.6	64.8	67.2	69.5	71.6	73.3
			8.63	16.1	22.9	28,9	34.0	38.9	43.2	47.1	50,6	54,1	56.8	59.7	62.5	64.8	67.1	69.1
				8.11	15.3	21.4	27.3	32.3	37.1	41.1	45.0	48.6	51.9	54.8	57.4	60.3	62.6	64.6
					7,60	14.3	20,5	25.8	30.7	35.3	39.1	43.2	46.5	49.9	52.7	55,6	58.1	60.4
						7.18	13.8	19.3	24.5	29.3	33.9	37.9	41.3	44.8	48.0	50.9	53.6	56.1
							6.80	12.8	18.6	23.4	28.2	32.5	36.2	39.9	43.2	46.3	47.9	51.7
								6.46	12,4	17.8	22.6	27.0	31.0	34.9	38.5	41.8	44.7	47.4
									6.15	11.9	17.5	21.7	25,8	29.7	34,9	37.1	40.3	43.0
										5.81	11.3	16.3	20.6	24.7	28.8	32.2	35.8	38.7
											5.55	10.9	15.4	19.7	23.8	27.7	31.3	34.4
												5,30	10.2	14.8	19.0	23.3	26.7	30.0
													5.16	9.96	14.4	18.6	22.3	25.7
														4.90	9.57	13.7	17.9	21.5
															4.79	9.32	13.5	17.1
																4.66	8.93	12,8

## ACCUMULATORS OIL VOLUME AT INDICATED OPERATING PRESSURE (in cubic inches)

60 3

Size: 1 Gallon

700 5 800

900

1300

1400

1500

1700

1800

1900 Ö

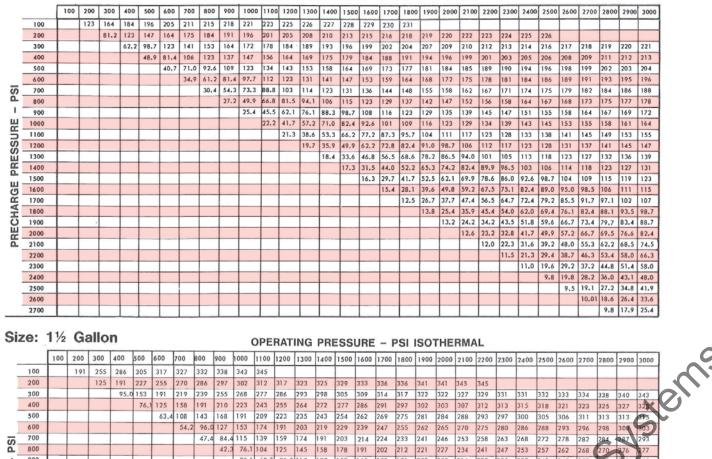
2000

2100

2200

2300

2400


2500

2600

2700

1600

**OPERATING PRESSURE - PSI ISOTHERMAL** 



165 178

34.6 63.6 87.3 108 125 143 157 168 180 191 198 209 216 221

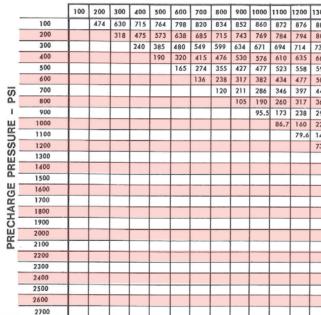
58.4 81.5 102 118 135 149 162 170 180 191 197 205

27.0 50.6 71.3 89.3 106 121 132 144 154 164 173

25.4 47.4 66.9 84.2 102 113 125 139 149

23.6 44.7 63.4 80.3 95.1 108 120

29.1 54.4 76.1 95.1 113 127 141 151 164 173 182 191


22.4 42.1 60.1

21.0 40.1





Size: 4 Gallon



208 216 223 230 237

95.1 112

79.3

76.0 90.4 102

57.1 72,0 86.0

38.0 54.4 59.1

19.1 36.1 51.5 66.1

242 247

241

216

178

156 163

203 211

134 145

123

30.5 43.9 56.3 68.1 78.2 88.

15.3 29.2 42.3 54.5 65.2 76.

14.3 28.2 40.7 52.3 63.

14.0 27.5 39.4 50

13.6 26.1 38

167 176

38 145 155 165

22 132 142 148

16.4 31.7 45.7 58.6 70.5 81.4 91.4 102

93.2 103

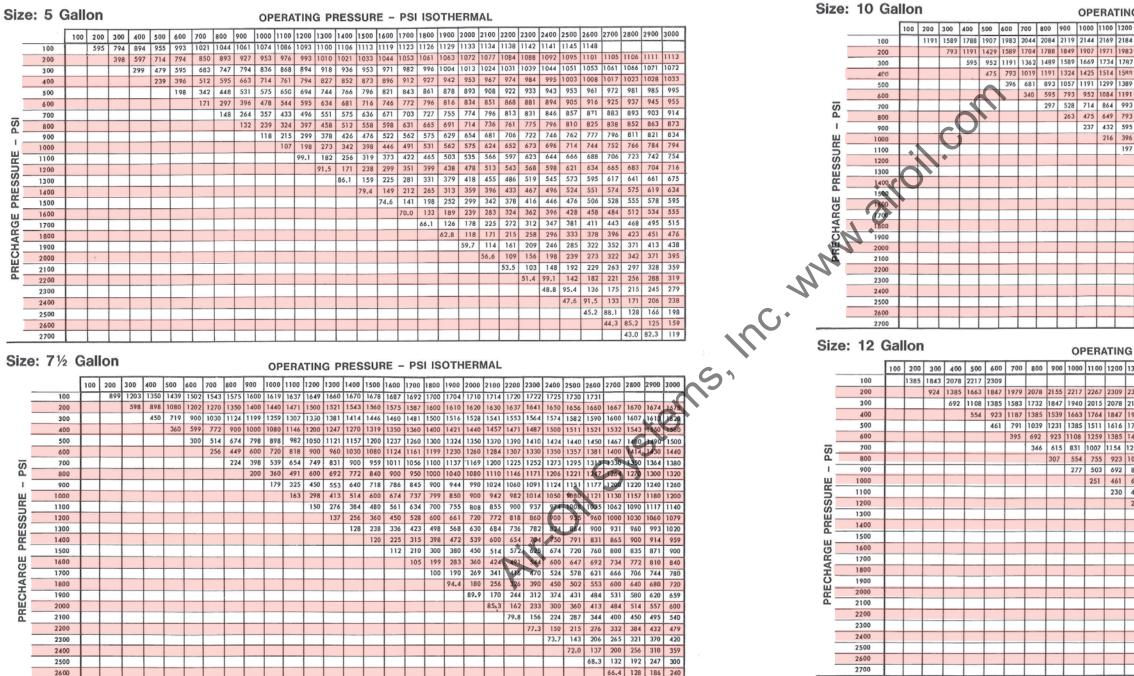
18.0 34.4 49.5 63.6 76.0 87.5 103 108 119 127

17.0 33.2 47.6 60.9 73.0 84.5 96.0 106

#### **OPERATING PRESSURE - PSI ISOTHERMAL**

	_		_	_						_	_	_	_	_			_	_
	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
	562	565	577	570	573	576												
	416	523	528	533	538	541	544	549	553	555	557	560	561	561	563	566	568	569
	468	479	487	495	502	507	514	517	523	526	529	533	536	540	541	544	547	549
	422	434	446	457	466	474	481	486	493	498	504	507	512	515	519	523	545	527
	379	391	406	419	431	440	450	457	464	470	476	483	487	491	496	500	504	506
	324	349	365	381	394	406	416	427	433	443	448	457	457	468	473	479	483	487
	281	304	324	342	358	372	385	396	405	416	424	432	440	445	451	456	461	467
	233	255	284	304	322	338	353	363	377	387	397	405	414	422	427	431	441	445
	186	217	243	266	287	304	321	334	348	360	370	381	390	398	405	414	420	425
	139	174	202	228	253	270	287	304	318	333	344	355	364	378	383	390	400	406
1	93.7	130	162	190	215	246	256	274	290	303	317	330	341	350	361	370	378	385
	46.8	87.3	120	151	179	202	223	243	261	276	289	304	316	324	339	349	359	365
	_	43.5	81.1	113	142	167	191	213	230	247	264	278	291	304	314	326	336	345
I			40.6	76.3	106	134	160	182	202	221	238	253	267	281	293	304	315	324
				38.1	71.5	101	127	151	173	193	211	228	243	257	270	283	294	304
I					35.8	67.6	96.2	121	144	165	184	202	220	233	247	254	273	283
I						33.7	64.1	91.5	115	137	158	176	193	210	225	239	251	262
Į							31.9	61.0	87.1	110	131	152	170	186	202	217	230	243
ļ								30.4	58.1	82.8	105	126	144	163	181	196	210	223
ļ									28.4	55,4	79.2	100	121	138	163	174	187	201
ļ										27.3	53,2	76.3	97.5	115	134	151	167	182
ļ									_		26.1	50.6	73.2	93.9	110	130	146	162
l												24.9	47.8	70.1	90.2	108	124	141
l											· .		24.3	46.8	67.6	87.1	104	121
l														23.1	45.1	65.2	84.1	101
ļ															22.5	43.9	63.3	81.1
L																21.8	42.1	60.9

#### **OPERATING PRESSURE - PSI ISOTHERMAL**


300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
884	885	891	895	902	902	904	906	909	912	915	917	918	921		<u> </u>		
808	821	830	836	843	851	855	862	864	871	875	878	880	881	883	885	889	892
736	751	767	778	786	794	803	815	820	824	830	834	840	845	851	853	857	862
665	684	700	715	732	743	757	764	773	781	792	794	804	810	814	820	824	828
598	617	637	658	676	692	706	719	728	738	747	756	764	772	778	784	792	794
508	546	572	596	618	636	652	670	681	694	705	715	725	. 734	743	751	758	764
441	477	510	537	562	583	603	621	637	651	664	676	686	697	705	715	725	733
367	410	446	477	505	531	552	573	590	610	623	636	650	662	671	681	690	715
292	340	381	416	450	477	501	525	544	564	580	596	611	624	637	648	658	668
220	272	317	358	393	423	451	477	500	521	540	555	573	594	601	614	626	637
146	203	254	297	336	371	401	430	454	477	498	516	534	551	565	580	593	604
73.4	136	190	238	280	317	351	382	419	433	454	477	496	508	530	546	562	572
	68.1	126	178	223	264	301	333	363	390	415	436	451	476	494	511	528	541
		63.6	120	167	211	250	286	317	345	373	397	420	441	460	471	494	509
			59.6	111	158	200	238	272	303	330	357	381	403	423	441	461	477
				56.2	105	150	190	227	260	290	317	343	367	387	410	428	446
			-		53.2	100	142	180	215	248	277	305	330	353	374	394	412
						50.2	95.7	135	173	206	238	267	293	317	340	361	381
							47.9	89.8	130	165	198	228	256	282	307	328	349
								45.4	86.8	123	160	190	220	256	272	295	317
									43.1	83.2	118	152	182	211	238	263	286
										41.1	79.4	114	146	176	203	230	254
											39.1	76.4	110	140	170	176	222
												38.1	73.6	105	136	163	190
													36.2	70.6	101	131	159
														35.3	68,1	99.6	126
											-				34.3	65.8	95.5

# ACCUMULATORS

### OIL VOLUME AT INDICATED OPERATING PRESSURE (in cubic inches)



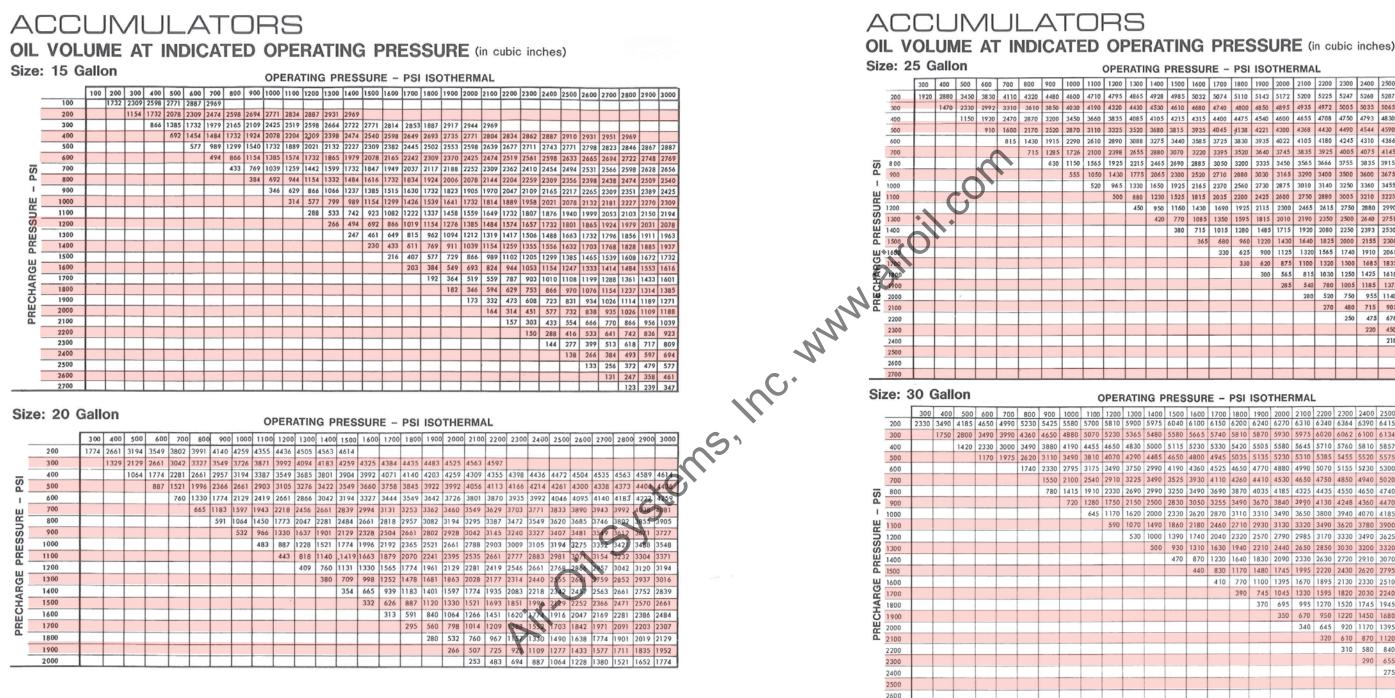
**OPERATING PRESSURE - PSI ISOTHERMAL** 



ACCUMULATORS

64.8 123 17

2700


### OIL VOLUME AT INDICATED OPERATING PRESSURE (in cubic inches)

#### **OPERATING PRESSURE - PSI ISOTHERMAL**

1				_														
)	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
1	2199	2209	2218	2234	2238	2248	2259	2265	2271									
3	2019	2044	2064	2084	2098	2119	2129	2144	2157	2169	2174	2184	2189	2199	2204	2209	2214	2219
7	1831	1871	1907	1939	1961	1987	2009	2029	2044	2058	2074	2084	2096	2107	2119	2129	2139	2145
3	1649	1704	1744	1789	1819	1849	1878	1907	1929	1951	1968	1983	1999	2019	2028	2044	2056	2064
?	1484	1529	1588	1638	1681	1718	1757	1786	1814	1840	1862	1886	1905	1921	1941	1958	1971	1983
I	1269	1362	1427	1489	1539	1589	1627	1669	1659	1734	1759	1787	1809	1831	1851	1871	1889	1907
3	1099	1191	1269	1340	1399	1457	1504	1548	1588	1624	1659	1689	1717	1738	1764	1788	1808	1829
3	916	1019	1111	1191	1259	1324	1379	1429	1474	1513	1552	1589	1620	1649	1674	1704	1721	1743
5	732	849	953	1041	1120	1191	1252	1310	1358	1407	1447	1489	1524	1557	1589	1619	1644	1669
5	547	681	792	893	979	1057	1127	1191	1243	1299	1346	1389	1429	1484	1499	1528	1561	1589
7	365	509	635	742	841	924	1002	1071	1133	1191	1241	1288	1349	1374	1412	1447	1481	1508
	182	340	476	595	700	792	876	952	1046	1084	1134	1191	1238	1269	1324	1362	1401	1427
		171	316	446	558	659	752	834	907	975	1034	1088	1142	1191	1233	1279	1314	1349
			157	297	418	527	625	714	793	864	932	993	1047	1099	1147	1191	1235	1269
				148	279	396	501	594	681	757	829	893	953	1007	1157	1107	1152	1191
					138	263	375	475	566	649	721	793	851	916	969	1019	1069	1111
						131	249	357	451	341	621	695	762	824	884	912	985	1028
							124	236	340	432	516	595	666	732	. 793	849	903	953
								118	226	323	413	495	571	639	704	765	821	872
									113	216	309	396	475	547	639	- 681	738	792
										106	206	297	381	456	504	595	656	714
											101	197	285	365	441	509	573	635
												97,4	189	273	352	426	490	555
													95.3	182	263	340	409	476
														90.4	175	254	328	397
											×				88.1	171	247	316
																85.7	164	237

#### **OPERATING PRESSURE - PSI ISOTHERMAL**

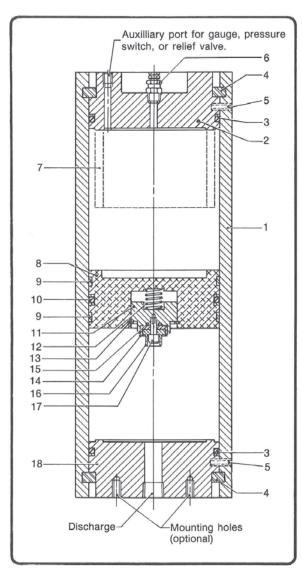
				_						_							
300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
345																	
132	2177	2217	2252	2282	2309	2334	2350										
919	1979	2032	2078	2119	2155	2188	2217	2243	2267	2289	2309	2328	2345	2361			
705	1781	1846	1905	1955	2001	2042	2078	2110	2151	2169	2194	2217	2238	2258	2276	2294	2309
492	1583	1663	1732	1793	1847	1896	1940	1979	2015	2048	2078	2106	2132	2155	2177	2198	2217
279	1385	1478	1559	1630	1693	1750	1801	1847	1889	1928	1963	1995	2025	2053	2078	2102	2125
066	1187	1293	1385	1467	1539	1604	1663	1715	1763	1807	1847	1884	1919	1950	1979	2007	2002
852	989	1108	1212	1304	1385	1458	1524	1583	1637	1687	1732	1774	181-2	1847	1880	1911	1940
639	791	923	1039	1141	1231	1313	1385	1451	1511	1566	1616	1663	1705	1745	1781	1816	1847
426	593	739	866	978	1077	1167	1247	1319	1385	1446	1501	1552	1599	1642	1682	1720	1755
213	395	554	692	815	923	1021	1108	1187	1259	1325	1385	1436	1492	1539	1583	1624	1663
	197	369	519	652	769	875	970	1064	1133	1205	1270	1330	1385	1437	1484	1529	1570
		184	346	489	615	729	831	923	1007	1084	1154	1219	1279	1334	1385	1433	1478
			173	325	461	583	692	791	881	964	1039	1108	1172	1231	1286	1338	1385
				163	307	437	554	659	755	843	923	997	1066	1129	1187	1233	1293
					153	291	514	527	629	723	808	887	959	1026	1087	1147	1201
						145	277	395	503	603	692	776	852	923	989	1051	1108
							138	263	377	482	577	665	746	821	909	955	1016
								131	251	361	461	554	639	718	791	860	923
									125	241	346	443	533	615	692	764	831
										120	230	332	426	513	593	669	739
											115	221	319	410	494	573	646
												110	213	307	395	477	554
													106	205	296	382	461
							-							102	193	286	369
_															98	191	277



2700

#### **OPERATING PRESSURE - PSI ISOTHERMAL**

0	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
55	4928	4985	5032	5074	5110	5143	5172	5200	5225	5247	5268	5287	5307	5323	5340	5354	5367
30	4530	4610	4680	4740	4800	48.50	4895	4935	4972	5005	5035	5065	5093	5116	5139	5160	5180
5	4105	4215	4315	4400	4475	4540	4600	4655	4708	47.50	4793	4830	4865	4898	4930	4957	4983
20	3680	3815	3935	4045	4138	4221	4300	4368	4430	4490	4544	4590	4635	4675	4715	4745	4782
8	3275	3440	3585	3725	38 30	3935	4022	4105	4180	4245	4310	4366	4420	4465	4515	4560	4595
55	2880	3070	3220	3395	3520	36 40	3745	3835	3925	4005	4075	4145	4205	4260	4315	4365	4413
15	2465	2690	2885	30 50	3200	3335	3450	3565	3666	3755	3835	3915	3985	40.50	4110	4165	4215
75	2065	2300	2520	2710	2880	3030	3165	3290	3400	3500	3600	3675	3765	3835	3905	3970	4025
30	1650	1925	2165	2370	2560	2730	2875	3010	3140	3250	3360	3455	3540	3620	3700	3765	3835
80	1230	1525	1815	2035	2200	2425	2600	2750	2880	3005	3210	3225	3325	3420	3500	3575	3650
50	950	1160	1430	1690	1925	2115	2300	2465	2615	2750	2880	2990	3100	3200	3295	3370	3255
	420	770	1085	1350	1595	1815	2010	2190	2350	2500	2640	2751	2815	2980	3080	3170	3620
		380	715	1015	1280	1485	1715	1920	2080	2250	2393	2530	2650	2770	2875	2970	3065
			365	680	960	1220	1430	1640	1825	2000	2155	2300	2430	2555	2670	2775	2870
				330	625	900	1125	1320	1565	1740	1910	2065	2205	2330	2455	2570	2675
					330	620	875	1100	1320	1500	1685	1835	2085	2130	227 0	2380	2485
_						300	565	815	1030	1250	1425	1610	1765	1910	2050	2180	2300
_							285	540	780	1005	1185	1375	1555	1705	1852	1975	2110
_								280	520	750	955	1140	1315	1475	1630	1775	1910
									270	480	715	905	1100	1270	1415	1570	1705
_										250	475	678	875	1070	1225	1375	1530
											220	450	645	830	1015	1185	1318
_												218	425	670	816	980	1130
													415	430	515	775	935
_														225	410	605	765
															185	375	530


#### **OPERATING PRESSURE - PSI ISOTHERMAL**

				_													
0	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
0	5975	6040	6100	6150	6200	6240	6270	6310	6340	6364	6390	6415	6434	6454	6475	6940	6506
5	5480	5580	5665	5740	5810	5870	5930	5975	6020	6062	6100	6134	6166	6196	6224	6248	6273
0	5000	5115	5230	5330	5420	5505	5580	5645	5710	5760	5810	5857	5900	5940	5946	6010	6042
0	4485	4650	4800	4945	5035	5135	5230	5310	5385	5455	5520	5575	5630	5680	5728	5770	5810
0	2990	4190	4360	4525	4650	4770	4880	4990	5070	5155	5230	5300	5365	5420	5478	5530	5580
5	3490	3525	3930	4110	4260	4410	4530	4650	4750	4850	4940	5020	5095	5165	5230	5290	5325
0	2990	3250	3490	3690	3870	4035	4185	4325	4435	4550	4650	4740	4830	4905	4980	5048	5110
0	2500	2830	3050	3255	3490	3670	3840	3990	4130	4248	4360	4470	4560	4650	4730	4810	4880
0	2000	2330	2620	2870	3110	3310	3490	3650	3800	3940	4070	4185	4290	4390	4485	4570	4650
0	1490	1860	2180	2460	2710	2930	3130	3320	3490	3620	3780	3900	4020	4130	4230	4325	4415
0	1000	1390	1740	2040	2320	2570	2790	2985	3170	3330	3490	3625	3750	3870	3980	4085	4180
	500	930	1310	1630	1940	2210	2440	2650	2850	3030	3200	3320	3490	3615	3735	3845	3951
		470	870	1230	1640	1830	2090	2330	2630	2720	29.10	3070	3220	3355	3490	3605	3720
			440	830	1170	1480	1745	1995	2220	2430	2620	2795	2950	3100	3210	3370	3490
				410	770	1100	1395	1670	1895	2130	2330	2510	2690	2845	2990	3120	3260
					390	745	1045	1330	1595	1820	2030	2240	2415	2590	2745	2890	3025
						370	695	995	1270	1520	1745	1945	2145	2330	2490	2645	2790
							350	670	950	1220	1450	1680	1880	2070	2245	2400	2650
								340	645	920	1170	1395	1610	1815	1995	2170	2350
									320	610	870	1120	1345	1545	1745	1920	2070
										310	580	840	1070	1290	1495	1690	1850
											290	655	795	1030	1245	1445	1620
												275	540	770	995	1195	1390
													270	520	745	970	1170
														255	495	720	940
															250	590	710
_		_	_	_		_	_	_	_	_	_	-	_	_	-	_	_

## Series Accumulators/Nuclear Actuators

## ACCUMULATORS

### PARTS LIST

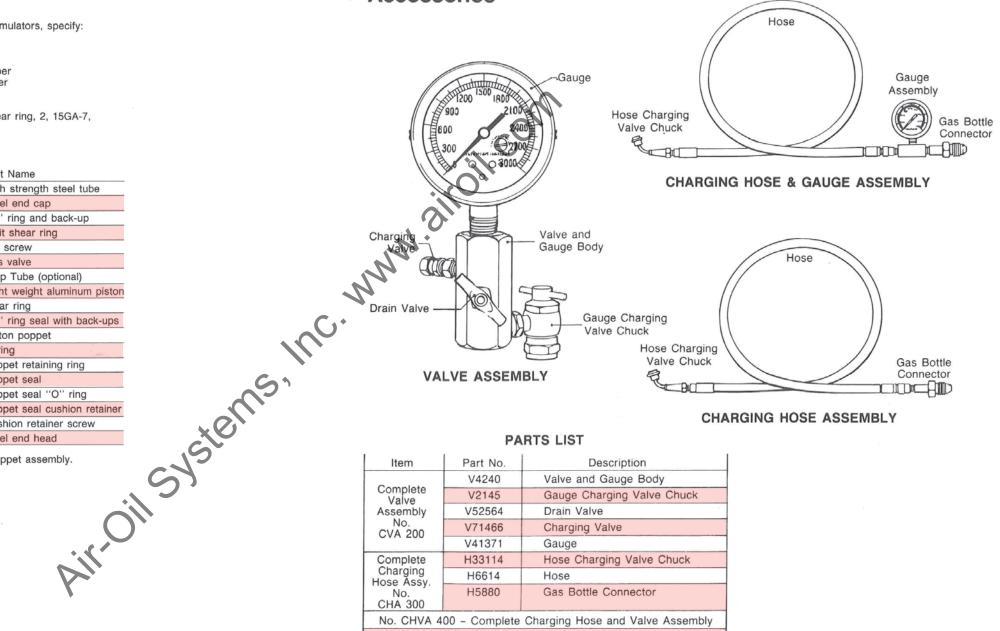


To order parts for listed accumulators, specify:

1. Part Number 2. Part Name

3. Quantity desired

- 4. Accumulator model number
- 5. Accumulator serial number
- 6. Accumulator size

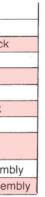

Example: Part No. 4, split shear ring, 2, 15GA-7, serial No., 15 gallon.

2A Part No.	No. Req'd.	Part Name
1	1	High strength steel tube
2	1	Steel end cap
3	2	"O" ring and back-up
4	2	Split shear ring
5	2	Set screw
6	1	Gas valve
7	1	Stop Tube (optional)
8	1	Light weight aluminum piston
9	2	Wear ring
10	1	"O" ring seal with back-ups
11*	1	Piston poppet
12*	1	Spring
13*	1	Poppet retaining ring
14*	1	Poppet seal
15*	1	Poppet seal "O" ring
16*	1	Poppet seal cushion retainer
17*	1	Cushion retainer screw
18	1	Steel end head

*Items included in piston poppet assembly.



## Accessories




#### PARTS LIST

Item	Part No.	Description
	V4240	Valve and Gauge Body
Complete Valve	V2145	Gauge Charging Valve Chuck
Assembly	V52564	Drain Valve
No. CVA 200	V71466	Charging Valve
004 200	V41371	Gauge
Complete	H33114	Hose Charging Valve Chuck
Charging Hose Assy.	H6614	Hose
No. CHA 300	H5880	Gas Bottle Connector
No. CHVA 4	00 - Complete	Charging Hose and Valve Assen
No. CHGA 5	00 - Complete	Charging Hose and Gauge Asse

## Series Accumulators/Nuclear Actuators

CHARGING HOSE ASSEMBLY



# **Nuclear Actuators**

Hanna Cylinders' quarter turn and rising stem nuclear actuators are constructed to withstand severe duty applications. All of our nuclear actuators are manufactured in accordance to the standards of our 10CFR50 appendix B quality assurance program.

Hanna supplies all 3 sections (cylinder, center mechanism {scotch yoke design}, and spring pack) which allows us to be unique in the marketplace.

- 1. Our quarter turn mechanisms are manufactured in (3) frame sizes with torque values ranging from 1,000 ft/lbs ~ 150,000 ft/lbs.
- Designed for inside / outside containment & safety / non-safety related applications. 2.
- Qualify to IEEE 323-2003, IEEE 344-1987, & IEEE 382-1996 specifications. 3.
- Qualify to latest Westinghouse specifications: 4.
  - APP-PV11-Z0-001 rev. 0 (valve specification) •
  - APP-PV11-Z0R-001 rev. 0 (data sheet report) ٠
  - APP-GW-VP-010 rev. 0 (EQ for valves) •
- 5. High pressure direct spring actuators for rising stem valves.
- Air and hydraulic valving panels, optional override accessories for nuclear & non-nuclear applications. 6.



**Series Mobile/** Welded Cylinders



Series Mobil Welded Cylind

# SERIES MOBILE/WELDED CYLINDERS

# **Mobile Custom Welded**

Heavy-Duty Custom Welded Cylinders

Construction and mining machinery, heavy-duty forklifts, material handling equipment, manlifts, mobile cranes, off-road vehicles, military equipment, marine and off-shore drilling rigs - and more - are some of the tough applications for Hanna's heavy-duty, custom-welded cylinders. Standard sizes through 12.00" bores. We also have the capability to produce cylinders with bore sizes to 30.00", and stroke lengths of 25'



### **DW Series Lift & Steering Cylinders**

ed cylinc o produce cylinc .o produce cylinc .d. Widely used on high-quality, high-volume consumer and commercial lawn and garden equipment, Hanna's DW Series hydraulic cylinders are also ideal for material handling equipment, industrial cleaning machines, agricultural and many other "off-road" applications. Pressure ratings up to 3,000 p.s.i. are available. Standard bore sizes are 1.00" through 3.00" with larger sizes available if required.







**Electrical Options** 

Series Mobile/Welded Cylinders



**Electrical Options** 

# **ELECTRICAL OPTIONS**

# **Proximity Switches**

for hydraulic and pneumatic cylinders



## **ADVANTAGES**

- Mount directly on hydraulic or pneumatic cylinders.
- Unique mounting allows 90° rotation.
- Weld immune circuit with standard SCP.
- Harsh environments don't affect sensing.
- No external mounting brackets required.
- Wide application flexibility.

Hanna offers the NAMCO EE230 Series Cylindicator® Proximity Switches for mounting on hydraulic and pneumatic cylinders. The sensing probe looks at the piston cushion or spud, providing full extend or full retract indication. Since the probe is inside the cylinder, harsh external environments cannot affect sensing. There are no costly external mounting brackets required.

The 2-wire AC circuit operates on 20 to 230 VAC for wide application flexibility. It operates reliably as a programmable controller input or with relay coils. The low 1.7 mA "off-state," leakage current allows direct input to programmable controllers without adding shunt resistors.

A LED indicator marked READY indicates that power is being supplied to switch. Another LED indicator marked TARGET indicates switch activation. Both LEDs flashing indicates a short circuit. Short circuit protection is standard, and protects the switch from shorts in the load or line. Upon sensing a short condition (.5 Amp or greater current) the switch assumes a non-conducting mode. The fault condition must be removed and power turned off to reset, preventing automatic restarts.



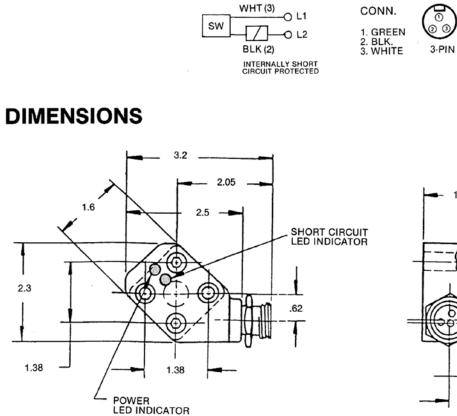


EE230 Series Cylindicators meet UL requirements for 3000 psi hydraulic systems. Four mounting holes allow 90° rotation increments, without costly spacer blocks and without changing probe length.

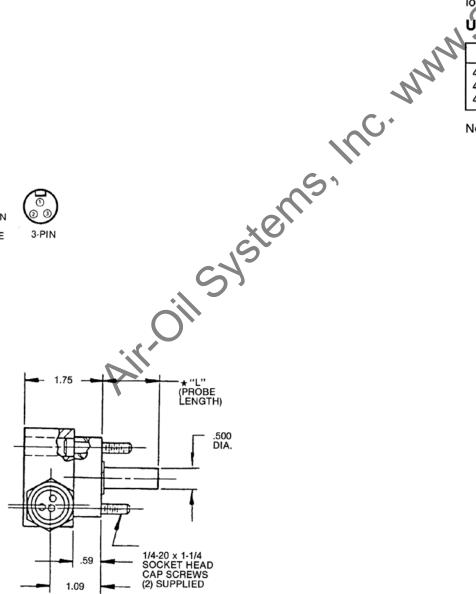
The units are designed to work within 1" of resistance welder tips carrying 20,000 Amperes. EE230 Series Cylindicators are ideal for stroke detection on hydraulic or pneumatic cylinders.

## SPECIFICATIONS

Pressure	
Sensing range Operating temperature range	
Repeatability	±10%
Switching differential	
Supply voltage (50/60 Hz)	
"On-state" voltage drop	
	6V @ 31-500 mA
Load current maximum	0.5 Amp
minimum	5 mÅ
Inrush current (rms 1 cycle)	
"Off-state" current	1.7 mA


Short circuit protection is standard

### Indicating LED's


standard ......1) Power on/non-conducting ..... 2) Both LEDs flashing indicates a short circuit. Meets NEMA 1, 12, 13 Ratings.

* 0.5 Henry inductive load Max. for DC applications.

## WIRING DIAGRAMS



AC



þ

## **ORDERING INFORMATION**

#### Availability

EE230 Series Cylindicator Proximity Switches are available on Hanna Series 2H, 3L, 3A, 3AN, and CA cylinders, 2.00" through 8.00" bores. The switches are not available on the front head of Series 3L, 3A, 3AN and CA cylinders on the front head of Series 3L, 3A, 3AN and CA cylinders on the following sizes: 2.00" bore, 1.38" diameter rod, and 2.50" bore, 1.75" diameter rod. See pages 4 and 5 for exact mounting position avail-ability for Series 3L, 3A, 3AN and CA; see pages 6 and 7 for mounting position availability for Series 2H cylinders cylinders.

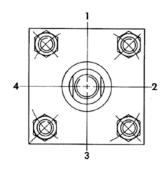
Specify switches for head end, cap end or both ends. Specify mounting position of switches and pipe port locations.

## Use the following plug-in cables

1	Bra	d Ha	arrisor	n Co.	Jo	by M	fg. Co	).
	40902	6′	(1.83	meters)	X-8984-3 X-8984-4 X-8984-5	6'	(1.83	mete

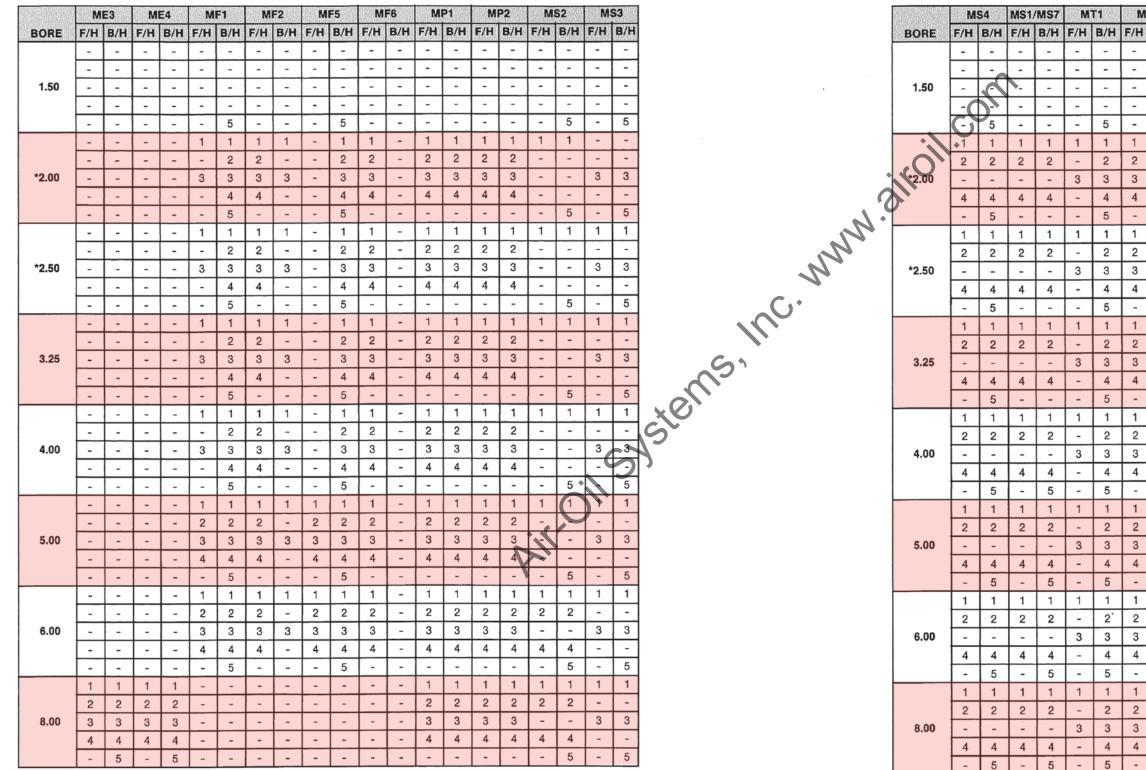
Note: Cables not supplied by Hanna Corporation.

2.3


1.38

### Mounting Information




EE230 Series Switches will be mounted at the factory according to customer specified locations. Refer to numbered positions on end view of cylinder as shown here.

Position location for both the Front Head and Blind Head is determined by viewing the cylinder at the Rod End. Position #5 is at back face of Blind Head.



## **PROXIMITY SWITCH MOUNTING POSITIONS AVAILABLE FOR 3A,**

## **3AN, CA and 3L SERIES CYLINDERS**



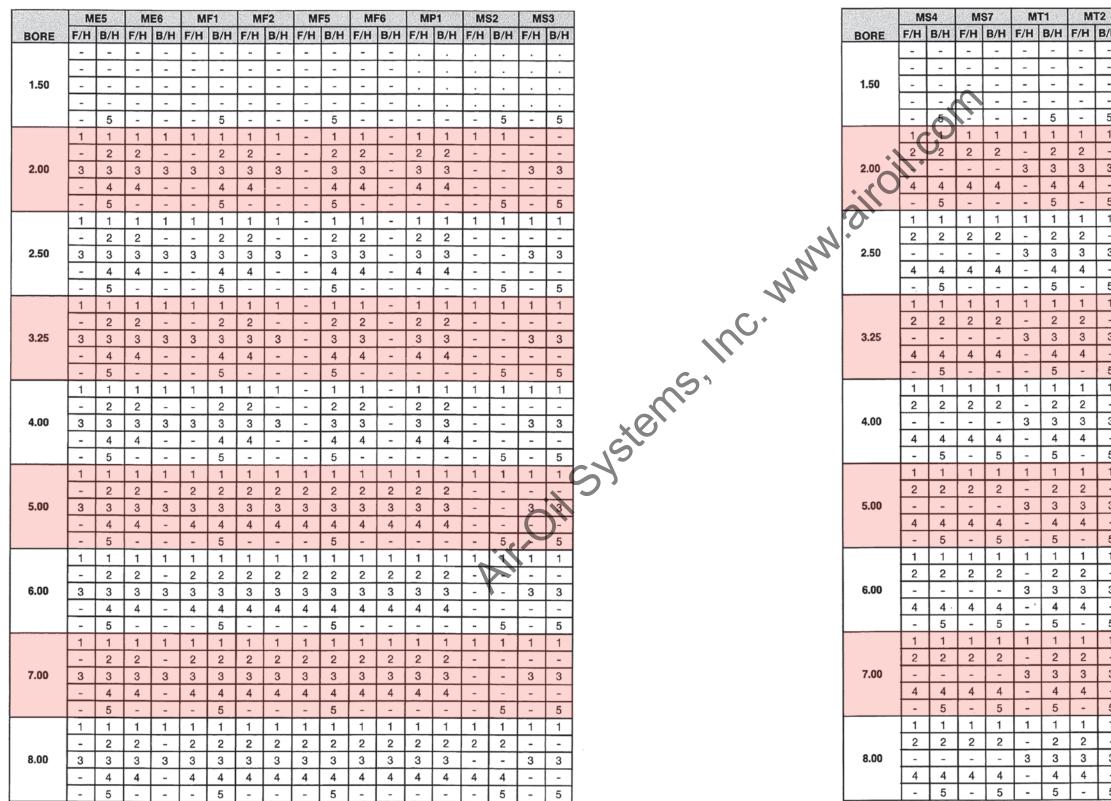
F/H = Front Head, B/H = Blind Head

*Note: Switch is not available on F/H 2.00 BORE 1.38 DIA. ROD, 2.50 BORE 1.75 DIA. ROD

F/H = Front Head, B/H = Blind Head

## Electrical Options




Position location for both the Front Head and Blind Head is determined by viewing the cylinder at the Rod End. Position #5 is at back face of Blind Head.

ľ	Г2	M	T4	M	K0	M	X1	M	X2	M	X3	M	X4
したいとう	B/H	F/H	B/H										
	-	-	-	-	-	· _	-						
	-	-	-	-	-		-					•	
	-	-	-	-	-	-	-			•			•
	-	-	-	-	-	-	- ,		•				•
	5	-	5	-	5	-	-	-	-	-	5	-	-
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	-	-	-	-	5	-	-
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	-	-	-	-	5	-	-
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	-	-	-	-	5	-	-
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	5	-	5	-	5	-	5
	1	1	1	1	ĺ 1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	5	-	5	-	5	-	5
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2 .	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	5	-	5	-	5	-	5
	1	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3	3	3
	-	4	4	4	4	4	4	4	4	4	4	4	4
	5	-	5	-	5	-	5	-	5	-	5	-	5

## PROXIMITY SWITCH MOUNTING POSITIONS AVAILABLE FOR

## **2H SERIES CYLINDERS**

Position location for both the Front Head and Blind Head is determined by viewing the cylinder at the Rod End. Position #5 is at back face of Blind Head.



F/H = Front Head, B/H = Blind Head

F/H = Front Head, B/H = Blind Head

## Electrical Options



											3	
	M	T4	M	X0	M	X1	M	X2	M	X3	M	X4
/H	F/H	B/H	F/H	B/H	F/H	B/H	F/H	B/H	F/H	B/H	F/H	B/H
-	-	-	-	-	· -	-						
-	-	-	-	-	-	-						
-	-	-	-	-	-	-						
-	-	-	-	-	-	-						
5	-	5	-	5	-	-	-	-	-	5	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	-	-	-	-	5	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	-	-	-	-	5	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	-	-	-	-	5	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	5	-	5	-	5	-	5
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	5	-	5	-	5	-	5
1	1	1	1	1	1	1	1	1	1	1	1	1
_	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	5	-	5	-	5	-	5
1	1	1	1	1	1	1	1	1	1	1	1	1
-	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	5	-	5	-	5	-	5
1	1	1	1	1	1	1	1	1	1	1	1	1
<u>.</u>	2	2	2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3	3	3	3
-	4	4	4	4	4	4	4	4	4	4	4	4
5	-	5	-	5	-	5	<u> </u>	5	-	5	<u> </u>	5
<u> </u>	L	1.0		1.0	1	1 0	1	1 .		1 4	1	1 0

# Reed Switches for pneumatic cylinders



**Reed Switch with Conduit Fitting** for 1.50" through 3.25" bore sizes only

## ADVANTAGES

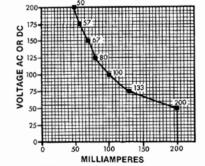
- · Adjustable mounting permits switch location anywhere within range of piston travel.
- · Several switches may be mounted to control or initiate any sequence function.
- No external moving parts to wear or maintain.
- Suited for use in harsh plant environments.
- Neon indicator light (LED) for 3-Amp model provides convenient positioning and troubleshooting of switch and circuits.
- Suitable for AC or DC service.
- 3-Amp switch provides internal transient protection under normal conditions.

Hanna Corporation offers Reed Switches manufactured by PHD, Inc. The switches are available in two types: a standard switch and a 3-Amp version.

Basically, the Reed Switch consists of two overlapping ferro magnetic blades (reeds). The reeds are hermetically sealed inside a glass tube leaving a small air gap between them.

Since the reeds are magnetic, they will assume opposite polarity, and be attracted to each other when influenced by a magnetic field. Sufficient magnetic flux density will cause the reeds to flex and contact each other. When the magnetic field is removed, they will again spring apart to their normal positions.

The cylinder/Reed Switch combination operates by using a magnetic band on the cylinder piston, which closes the externally mounted switch as it approaches. When the piston moves away again, the switch opens.


Standard switches can be operated on both AC or DC current. They are ideal for use as input for many types of sequences and programmable controllers. In some cases they can be used to drive some relays or valve solenoids.

However, electrical transients (inrush currents or line spikes) associated with inductive or capacitive loads can damage and shorten the life of the switch.

For such applications, the 3-Amp Reed Switch (AC only) is your best choice. This switch is very similar in construction to the standard Reed Switch. The difference is the inclusion of a triac which upgrades the contact rating to 3 Amps. The 3-Amp switch also has built-in protection against electrical transients.



AN12 Voltage vs. Amperes Derating Curve



240 V AC Max.

Model AN12 SPST - Form A Breakdown voltage - 400 V DC Min.

Indicator Lights Current Draw 0.3 milliamp Min. DC on voltage - 90 V DC Min. AC on voltage - 65 V AC

### Model 13109-02-6 3-Amp

Switching voltage - 200 V DC Max.

Circuit Normally open
VA (maximum)
Switching voltage
Current (break)
Leakage
Response time
Switch burden current5 mA
Note: All incandescent loads derate switch capacity to 10% due to inrush current.

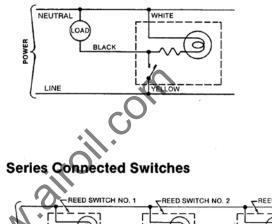
### Shock Rating

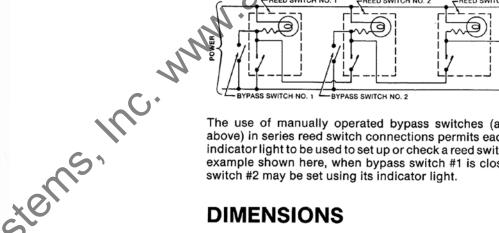
The basic switch can withstand up to 60 G maximum in the direction of contact closure without misfire or malfunction.

### Vibration Sensitivity

Switch will withstand vibration amplitude of 30 G at frequencies up to 6000 Hz without misfire. False operation can occur at vibration frequency levels higher than 6000 Hz.

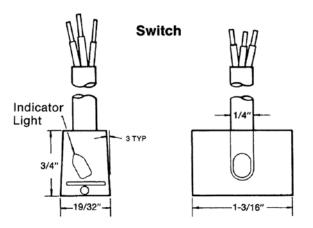
### **Operating Temperature**


-40° to +170° F for standard cable.


### **Cable Specification**

The conductors are tinned copper with polyethylene insulation. Conductors are cabled with rayon braid, a tinned copper braided shield and a chrome vinyl jacket on both AN12 and 13109-02-6 models.

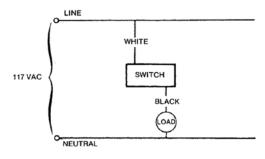
## WIRING DIAGRAMS


### AN12 Switch Wiring Schematic





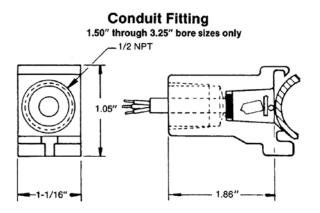
The use of manually operated bypass switches (as shown above) in series reed switch connections permits each switch indicator light to be used to set up or check a reed switch. In the example shown here, when bypass switch #1 is closed, reed switch #2 may be set using its indicator light.


## DIMENSIONS



## ORDERING INFORMATION

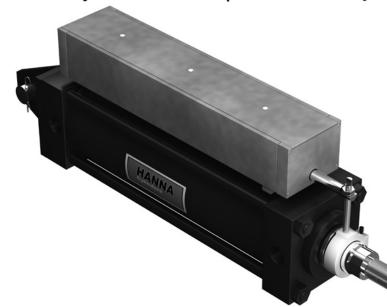
Reed Switches are available on Hanna Series 3A, 3AN, CA and MA cylinders, 1.50" bores through 5.00" bores. All cylinders are furnished with aluminum tubes. except for fiberglass tubes on CA cylinders.


### 13109-02-6 3-Amp Switch Wiring Schematic



Caution: Do not connect switch without a load. Permanent damage to switch will result.

Note: Switch is internally protected against failure due to normal electrical transient levels. However it may be necessary to use additional transient protection if high levels exist.


-BEED SWITCH NO 3



When ordering, specify either Switch Model AN12 or Model 13109-02-6, and quantity per cylinder.

# Limit Switch Assembly

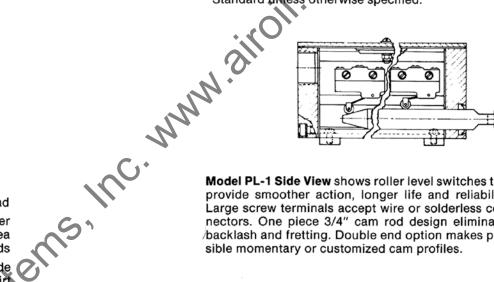
for hydraulic and pneumatic cylinders



## **ADVANTAGES**

- Dust and moisture resistant housing.
- Corrosion resistant and non-conducting housing.
- Fast readjustment time.
- Low maintenance costs.
- All wiring contained in a single housing.
- Fast installation only 4 mounting screws.
- Optimum number of switches per foot.
- Enclosure prevents false tripping.

Hanna offers the Model PL-1 Limit Switch Assembly which has proven its reliability and versatility in countless applications. A cam and multiple switch package, the PL-1 assembly is easily mounted to Hanna hydraulic or pneumatic cylinders. The unit provides precise electronic control of cycling, programming, digital sensing and servo-positioning operations. All wiring and switches are enclosed in a corrosion resistant and non-conducting housing for ease of installation, low maintenance.


## SPECIFICATIONS

Conduit connection1" NPT tapped in rear head
Insulation Fiber or fiberglass paper at each switch plus full area gaskets at cover and heads
Sealing Fully gasketed to exclude moisture and dirt
Rod seals Abrasive-resistant polyurethane wipers
Cam rods Hard chrome-plated C1144 accuracy stock
Switch location Infinitely adjustable
HousingExtruded 6061-T6 aluminum, with non-conducting hard anodic coating
Operating temperature range40° F to +180° F.
Operating differential Approx. 3/16 inch each switch
Operating force 12 pounds max., depending on length
Housing length
Cover fastening Quarter turn lock bars (captive) Hinged covers as optional extra
Switches See facing page for a wide range of switch options

## SWITCHES FOR MODEL PL-1 LIMIT SWITCH ASSEMBLY

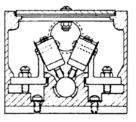
SWITCH	CIRCUIT	TERM'LS	125 VAC	250 VAC	480 VAC	125 VDC	250 VDC
MICRO* BZ-2RW822-A2	SPDT	3 Screw	15A 1/8 HP	15A 1/4 HP	15A	0.5A	0.25A
LICON 16-404	SPDT	4 Lug	10A	10A	_		_
MICRO RZ-3YWT822	SPDT (SPLIT)	5 Screw	5A	5A	—	_	—

NOTE: By reversing one switch, two adjacent switches may operate as close as 1 inch apart. *Standard unless otherwise specified.



Model PL-1 Side View shows roller level switches that provide smoother action, longer life and reliability. Large screw terminals accept wire or solderless connectors. One piece 3/4" cam rod design eliminates backlash and fretting. Double end option makes possible momentary or customized cam profiles.

## ORDERING INFORMATION


To order Limit Switch Assembly only, specify:

- A. Stroke in inches.
- B. Switch specifications: Unless specified, an equal number of left and right hand switches will be furnished. Left and right hand switches may be converted at any time. State choice and quantity:
  - 1. Miniature Micro BZ-2RW822-A2
  - 2. Sub-Miniature Licon 16-404 up to 26 switches per foot.

Alternate Miniature MICRO 5 terminal switch BZ-3YWT822.

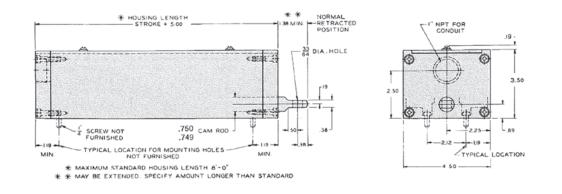
- C. Optional hinged cover at small additional cost. Specify right or left hand opening, viewed from rod end.
- D. Specify extra cam rod length required beyond standard in inches. Often required for front flange mounted cylinders.

(12 switches per foot, 6 each side, 6 positions.)

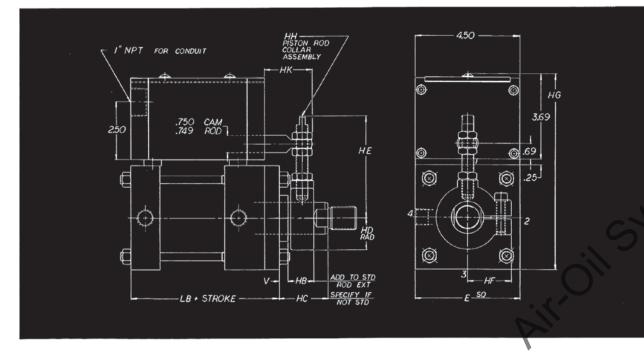


Model PL-1 End View shows unique Vee placement of switches for unlimited overlap possibilities. Massive snap-in bracket has double clamp screws with locknuts for vibration-proof setting. Maximum of 12 miniature switches per foot (6 per side); or 26 sub-miniature switches per foot (13 per side).

#### To order Limit Switch Assembly in combination with cylinder, and the Limit Switch Assembly is to be mounted to cylinder, specify:

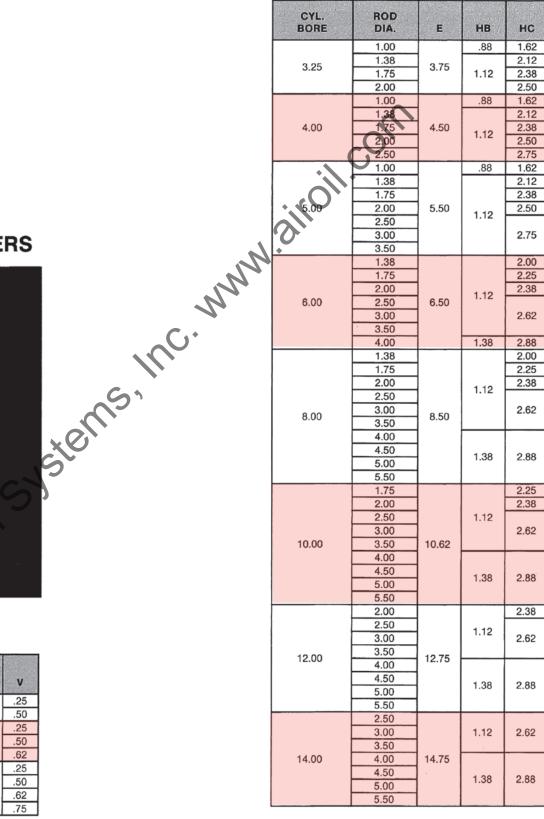

- A. Cylinder model number.
- B. Piston rod diameter
- C. Cushions, if required
- D. Rod end type
- E. Cylinder diameter
- F. Cylinder stroke
- G. Side of cylinder on which the Limit Switch Assembly should be mounted. Refer to numbered positions on end view of cylinder as shown here.
- H. Location of pipe ports and cushion needles (if cushioned). Pipe ports will normally be furnished at Position 4.




Position location for the Front Head and Blind Head is determined by viewing the cylinder at the Rod End.

## DIMENSIONS

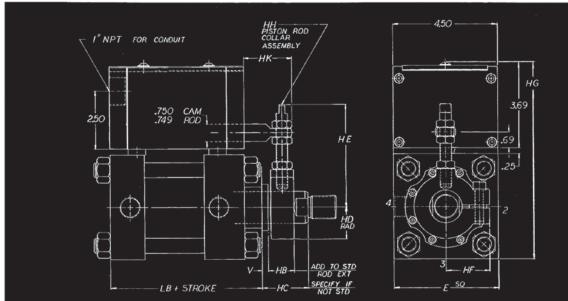
## SERIES 3A, 3AN AND 3L CYLINDER DIMENSIONS




## LIMIT SWITCH ASSEMBLY INSTALLATION WITH SERIES 3A AND 3AN PNEUMATIC, AND 3L HYDRAULIC CYLINDERS



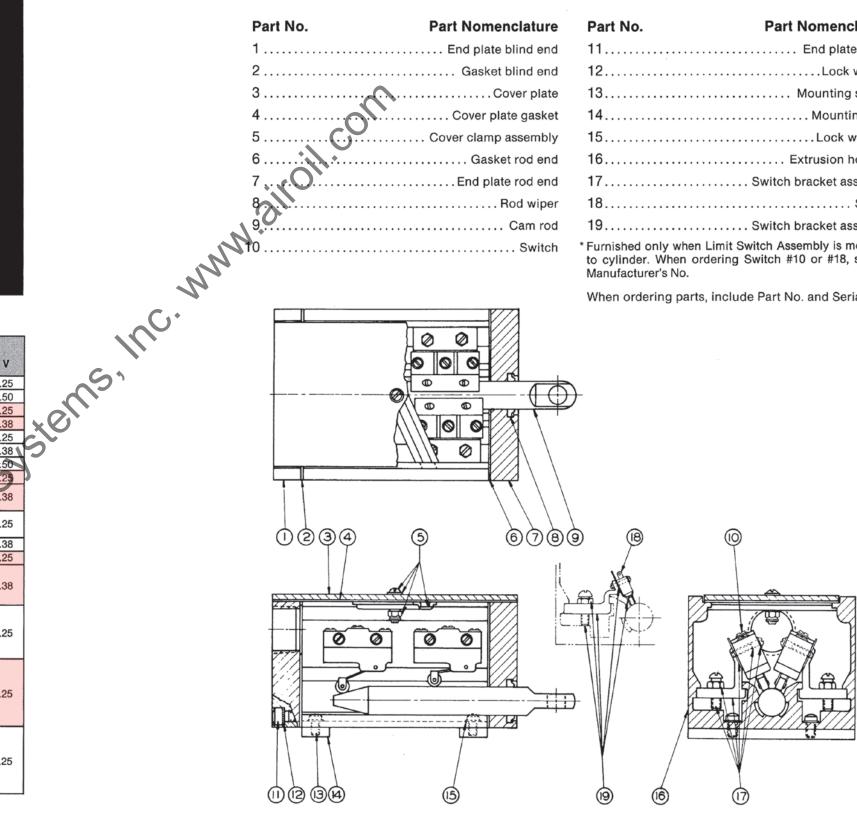
## SERIES 3A, 3AN AND 3L CYLINDER DIMENSIONS


CYL. BORE	ROD DIA.	E	НВ	нс	HD	HE	HF	HG	нн	нк	LB	v			
1.50	.62	2.00	.88	1.50	00	3.25	1.50	5.94	-1	1.50	4.00	.25			
1.50	1.00	2.00	.00	1.88 .88	3.38	1.50	1.50 5.94	-4	1.75	4.00	.50				
	.62					.88	1.50	.88	3.25	1.50		-1	1.50		.25
2.00	1.00	2.50	.00	1.88	.00	3.38	1.50	6.44	-4	1.75	4.00	.50			
	1.38		1.12	2.38	1.38	3.50	1.88		-8	2.00		.62			
	.62		.88	1.50	.88	3.25	1.50		-9	1.50		.25			
2.50	1.00	3.00	.00	1.88	.00	3.38	1.50	6.94	-10	1.75	4.10	.50			
2.00	1.38	3.00	1.12	2.38	1.38	3.50	1.88	0.94	-8	2.00	4.12	.62			
	1.75	]	1.12	2.62		3.62			-12	2.12		.75			



## Electrical Options

	HD	HE	HF	HG	нн	нк	LB	v																	
	.88	4.25	1.50		-11	1.75		.25																	
_	4.00	4.50	1 1 00	7.69	-15 -17	2.00	4.88	.38																	
-	1.38	4.62	1.88	ч. — — — — — — — — — — — — — — — — — — —	-17	2.12		.50																	
-	.88	4.75	1.50		-10	1.75		.25																	
+	.00.	4.25	1.50		-15	2.00		.38																	
┥	1.38	4.62	1.88	8.44	-17		4.88																		
۲					-18	2.12		.50																	
1	2.12	4.75	2.75		-58	2.25		.62																	
	.88	4.62	1.50		-24	1.75		.25																	
		4.75			-30	2.00		.38																	
	1.38	5.00	1.88		-31	2.12		.50																	
4				9.44	-18		5.12																		
	0.40	4.75	0.75		-58	0.05																			
	2.12	5.50	2.75		-59 -29	2.25		.62																	
-		5.50			-29	2.00		.25																	
$\neg$	1.38	5.62	1.88		-61	2.00		.20																	
┥	1.50	5.12	1.00		-26	2.12		.38																	
┥				10.44	-27		5.75																		
	2.12	5.62	2.75		-28	2.25		50																	
		5.50			-29			.50																	
	3.12	5.25	3.75		-62	2.38																			
		6.50			-63	2.00		.25																	
	1.38	7.12	1.88		-46	2.12		.38																	
4		6.25			-64	2.12	5.88																		
	2.12	7.00	2.75	12.44	-47	2.25																			
		6.62			-65																				
+		6.50		0.50	6 50	6 50	6 50			-42 -43			50												
						-43			.50																
	3.12			6.62	6.62	6.62	6.62	6.62	6.62	6.62	6.62	6.62	6.62	3.75		-00	2.38								
		6.50			-45																				
1					-46																				
٦	1.38	7.25	1.88	1.88 -48 2.12	2.12		.38																		
Τ		7.60			-67																				
	2.12	7.62	7.62	7.62	7.62	7.62	7.62	1.02	1.02	1.02	1.02				1.02	1.02	1.02			2.75		-68	2.25		
_		7.38		14.56	-55		7.12																		
		7.50			-69			.50																	
	3.12	7.00	3.75		-70	2.38																			
		7.62			-71 -72																				
+	1.38	7.88	1.88		-12	2.12		.38																	
+	1.50	8.31	1.00		-50	2.12		.50																	
	2.12	8.62	2.75		-73	2.25																			
		9.25		10.00	-51		7.00																		
T				16.69	-74		7.62	.50																	
	3.12	8.50	3.75		-75	2.38																			
	0.12	8.62	5.75		-76	2.00																			
		8.88			-77																				
		9.31	0.77		-50																				
	2.12	9.62	2.75		-78	2.25																			
+		9.31		10.00	-51		0.00	50																	
		9.50		18.69	-79 -80		8.88	.50																	
	3.12	9.62	3.75		-80	2.38																			
		9.88			-82																				
	0.00			02																					


## LIMIT SWITCH ASSEMBLY INSTALLATION WITH SERIES 2H HYDRAULIC CYLINDERS



## **SERIES 2H CYLINDER DIMENSIONS**

CYL. BORE	ROD DIA.	E	НВ	нс	HD	HE	HF	HG	нн	нк	LB	v		
1 50	.62	2.50	.88	1.50	.88	3.44	1.50	6.44	-2	1.50	5.00	.25		
1.50	1.00	2.50	.00	1.88	.00	3.44	1.50	0.44	-4	1.75	5.00	.50		
2.00	1.00	3.00	.88	1.62	.88	3.69	1.50	6.94	-7	1.75	5.25	.25		
2.00	1.38	3.00	1.12	2.12	1.38	3.09	1.88	0.54	-8	2.00	0.20	.38		
	1.00	1	.88	1.62	.88		1.50		11	1.75		.25		
2.50	1.38	3.50	1.12	2.12	1.38	3.94	1.88	7.44	-12	2.00	5.38	.38		
	1.75		1.12	2.38	1.00		1.00		-13	2.12		.50		
	1.38	4		2.00					-16	2.00		.25		
3.25	1.75	4.50	1.12	2.25	1.38	4.44	1.88	8.44	-17	2.12	6.25	.38		
	2.00			2.38					-18					
	1.75	4	1.12	2.12	1.38		1.88		-21	2.12		.25		
4.00	2.00	5.00	1.38	2.50	4.69		8.94	-22	2.25	6.62				
	2.50			2.75	2.12		2.75		-23	2.38		.38		
	2.00	4	1.12	2.25	1.38		1.88	-	-26	212		.25		
5.00	2.50	6.50	6.50	1.38 2.75		5.44		10.44	-27		7.12			
	3.00		1.38		2.12		2.75		-28	2.38	1.112	.38		
	3.50								-29					
	2.50	-									-32			
6.00	3.00	7.50	1.38	2.62	2.12	5.94	2.75	11.44	-33 2.38	2.38	8.38	.25		
	3.50	1.00	1.50	7.00	1.00					-	34		0.00	
	4.00				3.12		3.75		-35					
	3.00	4			2.12		2.75	-	-36	{				
	3.50								37					
7.00	4.00	8.50	1.38	2.62		6.44	3.75	12.44	-38	2.38	9.50	.25		
	4.50	4			3.12				-66					
	5.00						0.75		-39					
	3.50	4			2.12		2.75		-42					
	4.00								-43					
8.00	4.50	9.50	1.38	2.62	3.12	6.94	3.75	13.44	-66	2.38	10.50	.25		
	5.00	4							-44					
	5.50								-45					

LIMIT SWITCH ASSEMBLY PARTS LIST



NOTE: 10.00, 12.00 and 14.00 bore dimensions and drawings available from factory upon request.

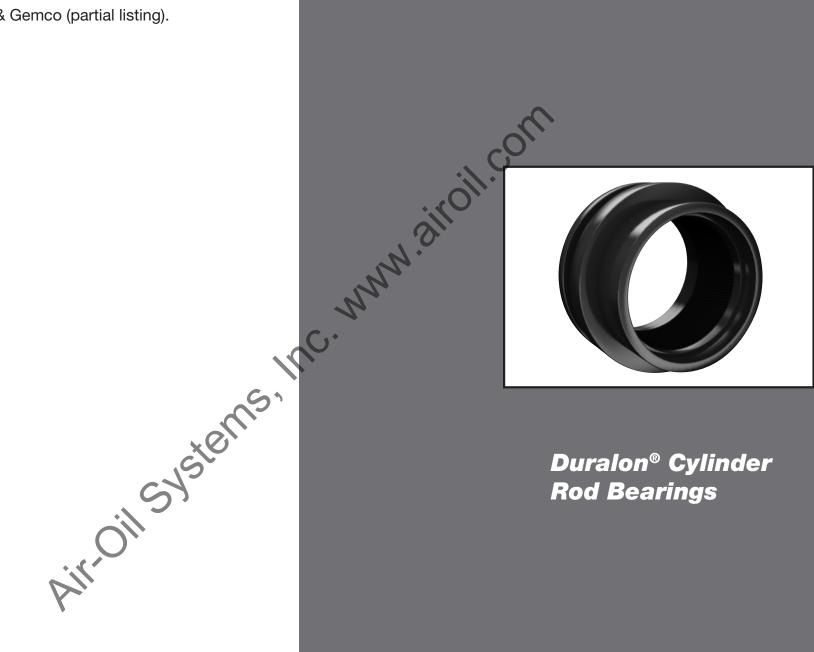
## Electrical Options

a	t	u	r	е

	Part No.		Part Nomenclature
	11	•••	End plate screw
	12	•••	Lock washer
	13	•••	Mounting screw*
	14		Mounting bar*
	15		Lock washer*
	16	•••	Extrusion housing
	17		. Switch bracket assembly
	18	•••	Switch
	19	•••	. Switch bracket assembly
*			witch Assembly is mounted Switch #10 or #18, specify

When ordering parts, include Part No. and Serial No.

## **OPTIONS**


Electronic feedback devices such as MTS, Balluff, Temposonic & Gemco (partial listing). (Hanna can supply & install upon customer request.)

Protective housings for submersion service.

Intrinsically safe & explosion-proof probes & switches.

Variety of output selections: 4  $\sim$  20 ma / 0  $\sim$  10 vDC (consult factory).

Cable connections per customer requirements (consult factory).

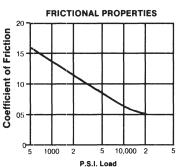


Duralon[®] Cylindu Rod Bearings

# **DURALON® CYLINDER ROD BEARINGS**

The high-tech Duralon rod bearing is supplied as standard on all Hanna Series 2H and 3L hydraulic cylinders. This state-of-the art bearing has proven to be superior to all other bearing materials in countless cylinder applications. Here's why:

The useful life of any hydraulic cylinder is determined by the performance of the piston rod bearing. It is responsible for true alignment of the piston to the cylinder bore, and must carry the forces generated by both external and internally-generated eccentric loads.


Traditional bronze or cast iron bearings require constant lubrication to help minimize friction and resultant wear. Once the cylinder rod bearing begins to wear, the piston moves off true center of the cylinder bore, thus shortening cylinder life. Additionally, the wear pattern accelerates, causing deterioration in the piston rod winer. Latting deterioration in the piston rod wiper, letting contaminants into the cylinder and in the piston rod seal thereby causing fluid leakage.

Shanna has solved this critical design problem with the unique, non-metallic Duralon bearing. An exact combination of woven Teflon and Dacron fibers bonded to a fiberglass shell, Duralon bearings are capable of sustaining much higher compressive loads than either bronze or cast iron. In addition, Duralon bearings have an extremely low coefficient of friction, and require no lubrication to the bearing surface.

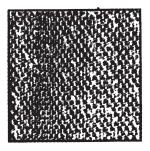
As a result, cylinders with Duralon bearings are ideal for use in heavy-duty applications, and servo

## **DURALON VS. COMPETITIVE BEARING MATERIALS**

COMPARISON OF NON-LUBRICATED LOAD BEARINGS AND THEIR OPERATING LIMITS CAPACITY (PSI) 4500 Porous Bronze MOST CYLINDER MANUFACTURERS 8000 Porous Iron Reinforced Teflon® 2500 60,000 Duralon Bearing* *Not to be used for design purposes



The low friction characteristic of the Duralon bearing is due to the Teflon fabric liner. Increased loading, at constant speed, results in a marked decrease in the coefficient of friction


Duralon is a Trademark of Rexnord, Inc. Nylon, Teflon and Dacron are Trademarks of DuPont Company

Air-oil Systems.

**Duralon Cylinder Rod Bearings** 



Duralon Rod Bearing in steel cartridge



Enlarged view of Duralon

systems requiring minimal actuator friction. Because of the low coefficient of friction, very little heat generation occurs, thereby prolonging both bearing and seal life.

Duralon bearings are compatible with most known fluids, including water, water glycols, standard petroleum-based fluids, phosphate esters and water/oil, oil/water fluids. They can operate in environments ranging from -65°F to +325°F.

COMPARISON OF FRICTION PROPERTIES OF JOURNAL BEARING MATERIALS							
	COEFFICIENT	SLIP STICK					
Steel-on-Steel	.50	Yes					
Bronze-on-Steel	35	Yes					
Aluminum							
Bronze-on-Steel	45	Yes					
Sintered Bronze-on-							
Steel (Mineral Oil)	13	No					
Bronze-on-Steel							
(Mineral Oil)	16	No					
Copper Film Deposited							
on Steel	30	Yes					
Teflon®-on-Steel	.04	No					
Duraion®-on-Steel	05-16	No					

# Visit our website at www.hannacylinders.com

You can visit Hanna in cyberspace at the website shown above. This site presents a wealth of information about Hanna, starting with a complete history of our company, dating back to the early 1900s.

In addition, the site enables you to quickly and easily order any or all of our catalogs. What's more, our HannaCAD programs can be downloaded from the site so they are immediately available to you.

The website also presents current news about Hanna with our On-Line Hot-Line. This section is updated periodically, as current news warrants.

And, there's a section that includes some of the most frequently asked questions that are posed.

Furthermore, you can contact our factory direct for information or a cylinder quotation. Our on-line Cylinder Application Checklist is there to help you provide us with the data we need to prepare an accurate, complete quotation. Finally, the website enables you to easily find the Hanna Fluid Power distributor nearest you.

Come see us soon

Air-Oil Systems

HANNA warrants that products it manufactures or designs are merchantable, are free from defects in material and workmanship, conform to any drawing and/or specifications furnished by purchaser and agreed to by HANNA in writing. As to products not manufactured by HANNA, HANNA will extend the manufacturer's warranty. (We will provide a copy upon request.) This warranty and extended manufacturer's warranty is subject to the remedy plause stated herein. Except for the foregoing, it is agreed that there are no warranties, Gexpressed or implied, which extend beyond the description on the face hereof.

REMEDY: All claims must be made within twelve (12) months of delivery to the original user. Upon satisfactory proof of claim by purchaser, HANNA will within a reasonable time, make any necessary repairs or supply replacement parts, or where the foregoing is deemed by HANNA to be commercially impractical, refund the purchase price upon return of the products. Repair or replacement parts provided under this remedy will be supplied by HANNA free of charge, F.O.B. shipping point, freight prepaid and allowed at the lowest available commercial rate. Purchaser charges for repairs, replacements or returns for credit will not be allowed unless authorized by HANNA in writing. HANNA will not be liable for any other purchaser costs, damages or expenses that may result from a breach of this contract. The foregoing remedy is sole and exclusive and states the full extent of HANNA's liability. No other remedy will be allowed, whether in contract or tort (including strict liability and negligence).



# WARRANTY

Hanna Cylinders, 804 East Park Avenue, Suite 101, Libertyville, IL 60048 Phone: 847-990-7700 Fax: 847-680-6991 Toll Free: 866-950-6257 Email: sales@hannacylinders.com Website: hannacylinders.com

Air oil systems, Inc. www.airoil.com